-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain_t2i.py
438 lines (377 loc) · 17.2 KB
/
train_t2i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import argparse
import copy
from copy import deepcopy
import logging
import os
from pathlib import Path
from collections import OrderedDict
import json
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from tqdm.auto import tqdm
from torch.utils.data import DataLoader
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from models.mmdit import MMDiT
from loss import SILoss
from utils import load_encoders
from dataset import MSCOCO256Features
from diffusers.models import AutoencoderKL
# import wandb_utils
import wandb
import math
from torchvision.utils import make_grid
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.transforms import Normalize
logger = get_logger(__name__)
CLIP_DEFAULT_MEAN = (0.48145466, 0.4578275, 0.40821073)
CLIP_DEFAULT_STD = (0.26862954, 0.26130258, 0.27577711)
def preprocess_raw_image(x, enc_type, resolution=256):
if 'clip' in enc_type:
x = x / 255.
x = torch.nn.functional.interpolate(x, 224, mode='bicubic')
x = Normalize(CLIP_DEFAULT_MEAN, CLIP_DEFAULT_STD)(x)
elif 'mocov3' in enc_type or 'mae' in enc_type:
x = x / 255.
x = Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)(x)
elif 'dinov2' in enc_type:
x = x / 255.
x = Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)(x)
x = torch.nn.functional.interpolate(x, 224 * (resolution // 256), mode='bicubic')
elif 'dinov1' in enc_type:
x = x / 255.
x = Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)(x)
elif 'jepa' in enc_type:
x = x / 255.
x = Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)(x)
x = torch.nn.functional.interpolate(x, 224, mode='bicubic')
return x
def array2grid(x):
nrow = round(math.sqrt(x.size(0)))
x = make_grid(x.clamp(0, 1), nrow=nrow, value_range=(0, 1))
x = x.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
return x
@torch.no_grad()
def sample_posterior(moments, latents_scale=1., latents_bias=0.):
device = moments.device
mean, logvar = torch.chunk(moments, 2, dim=1)
logvar = torch.clamp(logvar, -30.0, 20.0)
std = torch.exp(0.5 * logvar)
z = mean + std * torch.randn_like(mean)
z = (z * latents_scale + latents_bias)
return z
@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
"""
Step the EMA model towards the current model.
"""
ema_params = OrderedDict(ema_model.named_parameters())
model_params = OrderedDict(model.named_parameters())
for name, param in model_params.items():
name = name.replace("module.", "")
# TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
def create_logger(logging_dir):
"""
Create a logger that writes to a log file and stdout.
"""
logging.basicConfig(
level=logging.INFO,
format='[\033[34m%(asctime)s\033[0m] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
return logger
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
#################################################################################
# Training Loop #
#################################################################################
def main(args):
# set accelerator
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(
project_dir=args.output_dir, logging_dir=logging_dir
)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
save_dir = os.path.join(args.output_dir, args.exp_name)
os.makedirs(save_dir, exist_ok=True)
args_dict = vars(args)
# Save to a JSON file
json_dir = os.path.join(save_dir, "args.json")
with open(json_dir, 'w') as f:
json.dump(args_dict, f, indent=4)
checkpoint_dir = f"{save_dir}/checkpoints" # Stores saved model checkpoints
os.makedirs(checkpoint_dir, exist_ok=True)
logger = create_logger(save_dir)
logger.info(f"Experiment directory created at {save_dir}")
device = accelerator.device
if torch.backends.mps.is_available():
accelerator.native_amp = False
if args.seed is not None:
set_seed(args.seed + accelerator.process_index)
# Create model:
assert args.resolution % 8 == 0, "Image size must be divisible by 8 (for the VAE encoder)."
latent_size = args.resolution // 8
if args.enc_type != 'None':
encoders, encoder_types, architectures = load_encoders(args.enc_type, device)
else:
encoders, encoder_types, architectures = [None], [None], [None]
z_dims = [encoder.embed_dim for encoder in encoders] if args.enc_type != 'None' else [0]
#block_kwargs = {"fused_attn": args.fused_attn, "qk_norm": args.qk_norm}
model = MMDiT(
input_size=latent_size,
z_dims = z_dims,
encoder_depth=args.encoder_depth,
)
model = model.to(device)
ema = deepcopy(model).to(device) # Create an EMA of the model for use after training
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-mse").to(device)
requires_grad(ema, False)
latents_scale = torch.tensor(
[0.18215, 0.18215, 0.18215, 0.18215]
).view(1, 4, 1, 1).to(device)
latents_bias = torch.tensor(
[0., 0., 0., 0.]
).view(1, 4, 1, 1).to(device)
# create loss function
loss_fn = SILoss(
prediction=args.prediction,
path_type=args.path_type,
encoders=encoders,
accelerator=accelerator,
latents_scale=latents_scale,
latents_bias=latents_bias,
weighting=args.weighting
)
if accelerator.is_main_process:
logger.info(f"SiT Parameters: {sum(p.numel() for p in model.parameters()):,}")
# Setup optimizer (we used default Adam betas=(0.9, 0.999) and a constant learning rate of 1e-4 in our paper):
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Setup data:
train_dataset = MSCOCO256Features(path=args.data_dir).train
local_batch_size = int(args.batch_size // accelerator.num_processes)
train_dataloader = DataLoader(
train_dataset,
batch_size=local_batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True
)
if accelerator.is_main_process:
logger.info(f"Dataset contains {len(train_dataset):,} images ({args.data_dir})")
# Prepare models for training:
update_ema(ema, model, decay=0) # Ensure EMA is initialized with synced weights
model.train() # important! This enables embedding dropout for classifier-free guidance
ema.eval() # EMA model should always be in eval mode
# resume:
global_step = 0
if args.resume_step > 0:
ckpt_name = str(args.resume_step).zfill(7) +'.pt'
ckpt = torch.load(
f'{os.path.join(args.output_dir, args.exp_name)}/checkpoints/{ckpt_name}',
map_location='cpu',
)
model.load_state_dict(ckpt['model'])
ema.load_state_dict(ckpt['ema'])
optimizer.load_state_dict(ckpt['opt'])
global_step = ckpt['steps']
model, optimizer, train_dataloader = accelerator.prepare(
model, optimizer, train_dataloader
)
if accelerator.is_main_process:
tracker_config = vars(copy.deepcopy(args))
accelerator.init_trackers(
project_name="REPA",
config=tracker_config,
init_kwargs={
"wandb": {"name": f"{args.exp_name}"}
},
)
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
# Labels to condition the model with (feel free to change):
sample_batch_size = 64 // accelerator.num_processes
_, gt_xs, _ = next(iter(train_dataloader))
gt_xs = gt_xs[:sample_batch_size]
gt_xs = sample_posterior(
gt_xs.to(device), latents_scale=latents_scale, latents_bias=latents_bias
)
# Create sampling noise:
xT = torch.randn((sample_batch_size, 4, latent_size, latent_size), device=device)
for epoch in range(args.epochs):
model.train()
for raw_image, x, context, raw_captions in train_dataloader:
if global_step == 0:
ys = context[:sample_batch_size].to(device) # handed-coded
raw_image = raw_image.to(device)
x = x.squeeze(dim=1).to(device)
context = context.to(device)
z = None
with torch.no_grad():
x = sample_posterior(x, latents_scale=latents_scale, latents_bias=latents_bias)
zs = []
with accelerator.autocast():
for encoder, encoder_type, arch in zip(encoders, encoder_types, architectures):
raw_image_ = preprocess_raw_image(
raw_image, encoder_type, resolution=args.resolution
)
z = encoder.forward_features(raw_image_)
if 'mocov3' in encoder_type: z = z = z[:, 1:]
if 'dinov2' in encoder_type: z = z['x_norm_patchtokens']
zs.append(z)
with accelerator.accumulate(model):
model_kwargs = dict(context=context)
loss, proj_loss = loss_fn(model, x, model_kwargs, zs=zs)
loss_mean = loss.mean()
proj_loss_mean = proj_loss.mean()
loss = loss_mean + proj_loss_mean * args.proj_coeff
## optimization
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = model.parameters()
grad_norm = accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
if accelerator.sync_gradients:
update_ema(ema, model) # change ema function
### enter
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.checkpointing_steps == 0 and global_step > 0:
if accelerator.is_main_process:
checkpoint = {
"model": model.module.state_dict(),
"ema": ema.state_dict(),
"opt": optimizer.state_dict(),
"args": args,
"steps": global_step,
}
checkpoint_path = f"{checkpoint_dir}/{global_step:07d}.pt"
torch.save(checkpoint, checkpoint_path)
logger.info(f"Saved checkpoint to {checkpoint_path}")
if (global_step == 1 or (global_step % args.sampling_steps == 0 and global_step > 0)):
from samplers_t2i import euler_sampler
with torch.no_grad():
samples = euler_sampler(
model,
xT,
ys,
y_null=torch.tensor(
train_dataset.empty_token
).to(device).unsqueeze(0).repeat(ys.shape[0], 1, 1),
num_steps=50,
cfg_scale=4.0,
guidance_low=0.,
guidance_high=1.,
path_type=args.path_type,
heun=False,
).to(torch.float32)
samples = vae.decode((samples - latents_bias) / latents_scale).sample
gt_samples = vae.decode((gt_xs - latents_bias) / latents_scale).sample
samples = (samples + 1) / 2.
gt_samples = (gt_samples + 1) / 2.
out_samples = accelerator.gather(samples.to(torch.float32))
gt_samples = accelerator.gather(gt_samples.to(torch.float32))
accelerator.log({"samples": wandb.Image(array2grid(out_samples)),
"gt_samples": wandb.Image(array2grid(gt_samples))})
logging.info("Generating EMA samples done.")
logs = {
"loss": accelerator.gather(loss_mean).mean().detach().item(),
"proj_loss": accelerator.gather(proj_loss_mean).mean().detach().item(),
"grad_norm": accelerator.gather(grad_norm).mean().detach().item()
}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
if global_step >= args.max_train_steps:
break
model.eval() # important! This disables randomized embedding dropout
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
accelerator.wait_for_everyone()
if accelerator.is_main_process:
logger.info("Done!")
accelerator.end_training()
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Training")
# logging:
parser.add_argument("--output-dir", type=str, default="exps")
parser.add_argument("--exp-name", type=str, required=True)
parser.add_argument("--logging-dir", type=str, default="logs")
parser.add_argument("--report-to", type=str, default="wandb")
parser.add_argument("--sampling-steps", type=int, default=10000)
parser.add_argument("--resume-step", type=int, default=0)
# model
parser.add_argument("--encoder-depth", type=int, default=8)
parser.add_argument("--fused-attn", action=argparse.BooleanOptionalAction, default=True)
parser.add_argument("--qk-norm", action=argparse.BooleanOptionalAction, default=False)
# dataset
parser.add_argument("--data-dir", type=str, default="../data/coco256_features")
parser.add_argument("--resolution", type=int, choices=[256, 512], default=256)
parser.add_argument("--batch-size", type=int, default=256)
# precision
parser.add_argument("--allow-tf32", action="store_true")
parser.add_argument("--mixed-precision", type=str, default="fp16", choices=["no", "fp16", "bf16"])
# optimization
parser.add_argument("--epochs", type=int, default=1400)
parser.add_argument("--max-train-steps", type=int, default=400000)
parser.add_argument("--checkpointing-steps", type=int, default=50000)
parser.add_argument("--gradient-accumulation-steps", type=int, default=1)
parser.add_argument("--learning-rate", type=float, default=1e-4)
parser.add_argument("--adam-beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam-beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam-weight-decay", type=float, default=0., help="Weight decay to use.")
parser.add_argument("--adam-epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max-grad-norm", default=1.0, type=float, help="Max gradient norm.")
# seed
parser.add_argument("--seed", type=int, default=0)
# cpu
parser.add_argument("--num-workers", type=int, default=4)
# loss
parser.add_argument("--path-type", type=str, default="linear", choices=["linear", "cosine"])
parser.add_argument("--prediction", type=str, default="v", choices=["v"]) # currently we only support v-prediction
parser.add_argument("--cfg-prob", type=float, default=0.1)
parser.add_argument("--enc-type", type=str, default='dinov2-vit-b')
parser.add_argument("--proj-coeff", type=float, default=0.5)
parser.add_argument("--weighting", default="uniform", type=str, help="Max gradient norm.")
parser.add_argument("--legacy", action=argparse.BooleanOptionalAction, default=False)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)