forked from arokem/surround_suppression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
analyze_multirun.py
81 lines (65 loc) · 3.13 KB
/
analyze_multirun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import sys
from psychopy import gui,core
from matplotlib.mlab import csv2rec
import os
import numpy as np
import analysis_utils as ana
contrast_A = []
correct_A = []
contrast_B = []
correct_B = []
if __name__=="__main__":
bootstrap_n = 1000
#Weibull params set in analysis_utils: The guessing rate is 0.25 for 4afc
guess = 0.25
flake = 0.01
slope = 3.5
file_names = gui.fileOpenDlg(tryFilePath='./data')
contrast_A = []
correct_A = []
contrast_B = []
correct_B =[]
for file_idx, file_name in enumerate(file_names):
if file_idx == 0:
file_stem = file_name.split('/')[-1].split('.')[0]
else:
file_stem = file_stem + file_name[-8]
p, l, data_rec = ana.get_data(str(file_name))
trials_per_condition = float(p[' trials_per_block'])*(float(p[' num_blocks'])/2.0)
contrast_A.append(np.ones(trials_per_condition,1)
correct_A.append(np.ones(trials_per_condition,1)
contrast_B.append(np.ones(trials_per_condition,1)
correct_B.append(np.ones(trials_per_condition,1)
data_rec = csv2rec(file_name)
contrast_this_run = data_rec['annulus_target_contrast']
correct_this_run = data_rec['correct']
block_type = data_rec['block_type']
if not os.path.exists('data/analyzed_data'):
os.mkdir('data/analyzed_data')
labelit = ['annulus_on','annulus_off']
for idx_block,i in enumerate(['A','B']):
print labelit[idx_block]
contrast_this_block = contrast_this_run[block_type == i]
correct_this_block = correct_this_run[block_type == i]
if i == 'A':
if p['task'] == ' Annulus ':
contrast_this_block = contrast_this_block - p[' annulus_contrast']
for n in range(trials_per_condition):
contrast_A[n+(trials_per_condition*file_idx)] *= contrast_this_block[n]
correct_A[n+(trials_per_condition*file_idx)] *= correct_this_block[n]
#print contrast_this_block, correct_this_block
block_file_stem = file_stem + '_' + labelit[idx_block]
fig_name_A = 'data/analyzed_data/%s.png'%(block_file_stem)
else:
contrast_this_block = contrast_this_block[p[' trials_per_dummy']:]
correct_this_block = correct_this_block[p[' trials_per_dummy']:]
for n in range(trials_per_condition):
contrast_B[n+(trials_per_condition*file_idx)] *= contrast_this_block[n]
correct_B[n+(trials_per_condition*file_idx)] *= correct_this_block[n]
block_file_stem = file_stem + '_' + labelit[idx_block]
fig_name_B = 'data/analyzed_data/%s.png'%(block_file_stem)
#fig_name = 'data/analyzed_data/%s.png'%(file_stem)
th,lower,upper = ana.analyze(contrast_A, correct_A, guess, flake, slope, fig_name_A)
print "Threshold estimate: %s, CI: [%s,%s]"%(th, lower, upper)
th,lower,upper = ana.analyze(contrast_B, correct_B, guess, flake, slope, fig_name_B)
print "Threshold estimate: %s, CI: [%s,%s]"%(th, lower, upper)