forked from arokem/surround_suppression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ss_params.py
75 lines (69 loc) · 3.94 KB
/
ss_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""
This file stores all of the a priori variables for the ss program. All
variables must be stored inside of the p dict.
"""
p = dict(
paradigm = 'block', #'rapid_fire', # 'block' for the fmri
#block design
#(trials_per_block of trials in which the
#subject performs the task, followed by
#trials_per_block of no-task trials or
#'rapid_fire' for a continuous stream of task
#trials.
monitor = 'NNL', # 'NNL','582J_multisync'
screen = 0, # 0 is for the primary screen, 1 for auxillary
fullscreen =False, # True if fullscreen, False otherwise
scanner = True, # True if the stimulus presentation should be
# triggered by a scanner ttl pulse
num_segments = 4,
scanner_wait_time = 4, #extra seconds at beginning of scan,
# will present fixation point, rings and spokes
start_target_contrastA = 0.5, # Where to start the staircase for parallel condition.
start_target_orthog_contrastA = 0.3, #Where to start the staircase for orthogonal condition. This will make sure that staircases converge on threshold.
start_target_contrastB = 0.25, # Where to start the staircase.
fix_target_start = 0.4, # Where to start the staircase.
fix_baseline = 0.2, #baseline contrast of fixation (to compare with fix_target_start)
display_units = 'deg', # 'deg' means all the units below are in
# degrees of visual angle.
annulus_inner = 2*3, # deg of visual angle, Default: 2.86
annulus_outer = 2*6, # deg of visual angle, Default: 7.8
annulus_contrast = 0.2, # relative contrast, Default: 0.2
surround_outer = 2*12.2, # deg of visual angle, Default: 12.2
surround_inner = 2*1.0, # deg of visual angle, must be larger than fixation_size
surround_contrast = 0.8, # relative contrast, Default: 0.75
ring_width = 2*0.1, # deg of visual angle, Default: 0.1
spoke_width = 2*0.1, # deg of visual angle, Default: 0.1
spatial_freq = 1.1, # cycles/deg, Default: 1.1
spatial_phase = 0, # seconds, Default: 0
temporal_freq = 4, # Hz, Default: 4
temporal_phase = 0, # seconds, Default: 0
stimulus_duration = 0.75, # seconds, Default: 0.75
fixation_duration = 0.1, # seconds, Default: 0.1
response_duration = 0.9, # seconds, Default: 0.9
feedback_duration = 0.25, # seconds, Default: 0.25
fixation_size = 1.2, # deg of visual angle, Standard: 1.2
contrast_increments = 15, # How many steps from the lowest to the highest
#contrast, Standard: 15
targetA_contrast_max = 1.0,
targetB_contrast_max = 1.0,
targetB_contrast_min = 0.001,
fix_target_max = 1, #
fix_target_min = 0, #
trials_per_dummy = 5, #only have 5 trials in original block, dummy block that is not analyzed
trials_per_block = 15, #
num_blocks = 8, # Number of trials will be num_blocks *
# trials_per_block
dummy_blocks = 1, # In 'block' mode, the number of dummy blocks
# at the beginning of the run.
present_key = 1,
absent_key = 2,
)
#This should be the same:
p['targetA_contrast_min'] = p['annulus_contrast']
#p['targetB_contrast_max'] = p['annulus_contrast']
#This is derived from the above settings:
p['trial_duration'] = (p['stimulus_duration'] +
p['fixation_duration'] +
p['response_duration'] +
p['feedback_duration'])
p['block_duration'] = p['trials_per_block'] * p['trial_duration']