forked from scikit-tda/persim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
63 lines (58 loc) · 2.15 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/env python
from setuptools import setup
import re
VERSIONFILE="persim/_version.py"
verstrline = open(VERSIONFILE, "rt").read()
VSRE = r"^__version__ = ['\"]([^'\"]*)['\"]"
mo = re.search(VSRE, verstrline, re.M)
if mo:
verstr = mo.group(1)
else:
raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,))
with open('README.md') as f:
long_description = f.read()
setup(name='persim',
version=verstr,
description='Distances and representations of persistence diagrams',
long_description=long_description,
long_description_content_type="text/markdown",
author='Nathaniel Saul, Chris Tralie',
author_email='nat@riverasaul.com, chris.tralie@gmail.com',
url='https://persim.scikit-tda.org',
license='MIT',
packages=['persim'],
include_package_data=True,
install_requires=[
'scikit-learn',
'numpy',
'matplotlib',
'scipy',
'hopcroftkarp',
],
extras_require={ # use `pip install -e ".[testing]"``
'testing': [
'pytest'
],
'docs': [ # `pip install -e ".[docs]"``
'sktda_docs_config'
]
},
python_requires='>=2.7,!=3.1,!=3.2,!=3.3',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Science/Research',
'Intended Audience :: Education',
'Intended Audience :: Financial and Insurance Industry',
'Intended Audience :: Healthcare Industry',
'Topic :: Scientific/Engineering :: Information Analysis',
'Topic :: Scientific/Engineering :: Mathematics',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
],
keywords='persistent homology, persistence images, persistence diagrams, topology data analysis, algebraic topology, unsupervised learning, sliced wasserstein distance, bottleneck distance'
)