-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpipeline_pyscenic_r.py
executable file
·230 lines (199 loc) · 13 KB
/
pipeline_pyscenic_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""
=============================
Pipeline pySCENIC R analysis
=============================
Authors: Devika Agarwal and Lucy Garner
Overview
========
This pipeline performs pySCENIC downstream analysis steps (https://pyscenic.readthedocs.io/en/latest/index.html)
including:
1. AUCell score based UMAP projection and clustering in seurat
2. AUCell score based heatmaps and violin plots
3. Binarized score projection on UMAP for each regulon
4. Wilcoxon (or chosen test) and KS statistical test for each regulon for celltype and condition
5. Average AUCell score heatmaps based on wilcoxon (ot chosen test)/KS test results
6. Pathway analyses and plots for top regulons per condition/celltype for regulon target genes
"""
from ruffus import *
import sys
import os
import re
from cgatcore import pipeline as P
PARAMS = P.get_parameters(
["%s/pipeline.yml" % os.path.splitext(__file__)[0],
"../pipeline.yml",
"pipeline.yml"])
@follows(mkdir("reports.dir"))
@transform("pyscenic_results.dir/*.dir/*.dir/aucell.csv",
regex(r"pyscenic_results.dir/(r.*|n.*).dir/([^_]+).dir/aucell.csv"),
r"reports.dir/\1.dir/\2.dir/scenic_seurat.html")
def scenic_seurat(infile, outfile):
''' Seurat based analyses for scenic results'''
if "normalised" in infile:
datatype = "normalised"
elif "raw" in infile:
datatype = "raw"
sample = infile.split("/")[2]
sample = sample.replace(".dir", "")
R_PATH = os.path.join(os.getcwd(), "R")
outbase = P.snip(outfile, ".html")
dir = re.sub("aucell.csv", "", infile)
aucell_zscores = dir + PARAMS["aucell_zscores"]
aucell_zscores_celltype = dir + "aucell_zscores_" + PARAMS["annotation_celltype"] + "-annotation.csv"
aucell_zscores_condition = dir + "aucell_zscores_" + PARAMS["annotation_condition"] + "-annotation.csv"
binary_matrix = dir + PARAMS["binary_matrix"]
working_dir = PARAMS["working_dir"]
seurat_object = "data.dir/" + sample + "_" + PARAMS["rseurat_seurat_object"]
results_directory = "pyscenic_results.dir/" + datatype + ".dir/" + sample + ".dir/pyscenic_r.dir"
plots_directory = "plots.dir/" + datatype + ".dir/" + sample + ".dir/pyscenic_r.dir"
umap_pcs = PARAMS["rseurat_umap_pcs"]
celltype = PARAMS["rseurat_celltype"]
clustering_resolution = PARAMS["rseurat_clustering_resolution"]
stacked_vln_function = PARAMS["rseurat_stacked_vln_function"]
dotplot_function = PARAMS["rseurat_dotplot_function"]
diff_exp_test = PARAMS["rseurat_diff_exp_test"]
latent_variables = PARAMS["rseurat_latent_variables"]
reference_condition = PARAMS["rseurat_reference_condition"]
celltype_condition = PARAMS["rseurat_celltype_condition"]
FDR_threshold = PARAMS["rseurat_FDR_threshold"]
condition = PARAMS["rseurat_condition"]
condition_exclusion = PARAMS["rseurat_condition_exclusion"]
if condition_exclusion != "None" and sample in condition_exclusion:
condition = "None"
os.makedirs(results_directory)
statement = """Rscript -e "rmarkdown::render('%(R_PATH)s/scenic_seurat.Rmd',
params = list(working_dir = '%(working_dir)s',
seurat_object = '%(working_dir)s/%(seurat_object)s',
aucell_scores = '%(working_dir)s/%(infile)s',
aucell_zscores = '%(working_dir)s/%(aucell_zscores)s',
aucell_zscores_celltype = '%(working_dir)s/%(aucell_zscores_celltype)s',
aucell_zscores_condition = '%(working_dir)s/%(aucell_zscores_condition)s',
binary_matrix = '%(working_dir)s/%(binary_matrix)s',
results_directory = '%(working_dir)s/%(results_directory)s',
plots_directory = '%(working_dir)s/%(plots_directory)s',
datatype = '%(datatype)s',
umap_pcs = '%(umap_pcs)s',
celltype = '%(celltype)s',
condition = '%(condition)s',
clustering_resolution = '%(clustering_resolution)s',
stacked_vln_function = '%(working_dir)s/%(stacked_vln_function)s',
dotplot_function = '%(working_dir)s/%(dotplot_function)s',
diff_exp_test = '%(diff_exp_test)s',
latent_variables = '%(latent_variables)s',
reference_condition = '%(reference_condition)s',
celltype_condition = '%(celltype_condition)s',
FDR_threshold = '%(FDR_threshold)s'),
output_file = '%(working_dir)s/%(outfile)s')"
> %(working_dir)s/%(results_directory)s/scenic_seurat.log
2> %(working_dir)s/%(results_directory)s/scenic_seurat.err"""
P.run(statement, job_threads = PARAMS["rseurat_threads"], job_memory = '10G',
job_queue = PARAMS["cluster_queue"], job_condaenv = PARAMS["conda_env"])
@follows(scenic_seurat)
@transform("pyscenic_results.dir/*.dir/*.dir/binary_matrix.csv",
regex(r"pyscenic_results.dir/(r.*|n.*).dir/([^_]+).dir/binary_matrix.csv"),
r"reports.dir/\1.dir/\2.dir/scenic_analysis_R.html")
def rscenic(infile, outfile):
''' R based analyses for scenic results'''
if "normalised" in infile:
datatype = "normalised"
elif "raw" in infile:
datatype = "raw"
sample = infile.split("/")[2]
sample = sample.replace(".dir", "")
R_PATH = os.path.join(os.getcwd(), "R")
outbase = P.snip(outfile, ".html")
dir = re.sub("binary_matrix.csv", "", infile)
exp_matrix = dir + "filtered-expression.csv"
celltype = PARAMS["rscenic_celltype"]
condition = PARAMS["rscenic_condition"]
condition_exclusion = PARAMS["rscenic_condition_exclusion"]
if condition_exclusion != "None" and sample in condition_exclusion:
condition = "None"
celltype_condition = PARAMS["rscenic_celltype_condition"]
annotation_celltype = PARAMS["rscenic_annotation_celltype"]
annotation_condition = PARAMS["rscenic_annotation_condition"]
annotation_celltype_condition = "data.dir/" + sample + "_" + PARAMS["rscenic_annotation_celltype_condition"]
zscores_celltype = dir + "aucell_zscores_" + PARAMS["rscenic_annotation_celltype"]
rss_celltype = dir + PARAMS["rscenic_annotation_celltype"].split(".")[0] + "_RSS.csv"
zscore_filter_threshold_celltype = PARAMS["rscenic_zscore_filter_threshold_celltype"]
celltype_top = PARAMS["rseurat_diff_exp_test"] + '_celltype_top10.csv'
if condition != "None":
zscores_condition = dir + "aucell_zscores_" + PARAMS["rscenic_annotation_condition"]
rss_condition = dir + PARAMS["rscenic_annotation_condition"].split(".")[0] + "_RSS.csv"
zscore_filter_threshold_condition = PARAMS["rscenic_zscore_filter_threshold_condition"]
condition_reference_top = PARAMS["rseurat_diff_exp_test"] + '_condition_reference_top10.csv'
condition_pairwise_top = PARAMS["rseurat_diff_exp_test"] + '_condition_pairwise_top10.csv'
ks_condition_top = 'ks_condition_top10.csv'
else:
zscores_condition = "None"
rss_condition = "None"
zscore_filter_threshold_condition = "None"
condition_reference_top = "None"
condition_pairwise_top = "None"
ks_condition_top = "None"
zscores_celltype_condition = dir + PARAMS["rscenic_zscores_celltype_condition"]
rss_celltype_condition = dir + PARAMS["rscenic_rss_celltype_condition"]
zscore_filter_threshold_celltype_condition = PARAMS["rscenic_zscore_filter_threshold_celltype_condition"]
regulon_genes = dir + "regulons.csv"
species = PARAMS["rscenic_species"]
working_dir = PARAMS["working_dir"]
num_workers = PARAMS["rscenic_num_workers"]
results_directory = "pyscenic_results.dir/" + datatype + ".dir/" + sample + ".dir/pyscenic_r.dir"
plots_directory = "plots.dir/" + datatype + ".dir/" + sample + ".dir/pyscenic_r.dir"
binary_heatmap_cell_annotations = sample + "_" + annotation_celltype
go_ont_option = PARAMS["rscenic_go_ont_option"]
pvaluecutoff = PARAMS["rscenic_pvaluecutoff"]
qvaluecutoff = PARAMS["rscenic_qvaluecutoff"]
maxGSSize = PARAMS["rscenic_maxGSSize"]
msigdb_geneset = PARAMS["rscenic_msigdb_geneset"]
statement = """Rscript -e "rmarkdown::render('%(R_PATH)s/scenic_analysis_R.Rmd',
params = list(working_dir = '%(working_dir)s',
num_workers = '%(num_workers)s',
datatype = '%(datatype)s',
results_directory = '%(working_dir)s/%(results_directory)s',
plots_directory = '%(working_dir)s/%(plots_directory)s',
celltype = '%(celltype)s',
condition = '%(condition)s',
celltype_condition = '%(celltype_condition)s',
zscores_celltype = '%(working_dir)s/%(zscores_celltype)s',
zscores_condition = '%(working_dir)s/%(zscores_condition)s',
zscores_celltype_condition = '%(working_dir)s/%(zscores_celltype_condition)s',
zscore_filter_threshold_celltype = '%(zscore_filter_threshold_celltype)s',
zscore_filter_threshold_condition = '%(zscore_filter_threshold_condition)s',
zscore_filter_threshold_celltype_condition = '%(zscore_filter_threshold_celltype_condition)s',
binary_mtx = '%(working_dir)s/%(infile)s',
annotation_celltype = '%(working_dir)s/data.dir/%(sample)s_%(annotation_celltype)s',
annotation_condition = '%(working_dir)s/data.dir/%(sample)s_%(annotation_condition)s',
annotation_celltype_condition = '%(working_dir)s/%(annotation_celltype_condition)s',
binary_heatmap_cell_annotations = '%(working_dir)s/data.dir/%(binary_heatmap_cell_annotations)s',
rss_celltype = '%(working_dir)s/%(rss_celltype)s',
rss_condition = '%(working_dir)s/%(rss_condition)s',
rss_celltype_condition = '%(working_dir)s/%(rss_celltype_condition)s',
species = '%(species)s',
regulon_genes = '%(working_dir)s/%(regulon_genes)s',
exp_matrix = '%(working_dir)s/%(exp_matrix)s',
go_ont_option = '%(go_ont_option)s',
diff_exp_test = '%(rseurat_diff_exp_test)s',
celltype_top = '%(celltype_top)s',
condition_reference_top = '%(condition_reference_top)s',
condition_pairwise_top = '%(condition_pairwise_top)s',
ks_celltype_top = 'ks_celltype_top10.csv',
ks_condition_top = '%(ks_condition_top)s',
pvaluecutoff = '%(pvaluecutoff)s',
qvaluecutoff = '%(qvaluecutoff)s',
maxGSSize = '%(maxGSSize)s',
msigdb_geneset = '%(msigdb_geneset)s'),
output_file = '%(working_dir)s/%(outfile)s')"
> %(working_dir)s/%(results_directory)s/scenic_analysis_R.log
2> %(working_dir)s/%(results_directory)s/scenic_analysis_R.err"""
P.run(statement, job_threads = PARAMS["rscenic_num_workers"], job_memory = '15G',
job_queue = PARAMS["cluster_queue"], job_condaenv = PARAMS["conda_env"])
@follows(scenic_seurat, rscenic)
def full():
pass
def main(argv = None):
if argv is None:
argv = sys.argv
P.main(argv)
if __name__ == "__main__":
sys.exit(P.main(sys.argv))