forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cross_entropy_loss.py
218 lines (189 loc) · 9.18 KB
/
cross_entropy_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class CrossEntropyLoss(nn.Layer):
"""
Implements the cross entropy loss function.
Args:
weight (tuple|list|ndarray|Tensor, optional): A manual rescaling weight
given to each class. Its length must be equal to the number of classes.
Default ``None``.
ignore_index (int64, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
top_k_percent_pixels (float, optional): the value lies in [0.0, 1.0].
When its value < 1.0, only compute the loss for the top k percent pixels
(e.g., the top 20% pixels). This is useful for hard pixel mining. Default ``1.0``.
data_format (str, optional): The tensor format to use, 'NCHW' or 'NHWC'. Default ``'NCHW'``.
"""
def __init__(self,
weight=None,
ignore_index=255,
top_k_percent_pixels=1.0,
data_format='NCHW'):
super(CrossEntropyLoss, self).__init__()
self.ignore_index = ignore_index
self.top_k_percent_pixels = top_k_percent_pixels
self.EPS = 1e-8
self.data_format = data_format
if weight is not None:
self.weight = paddle.to_tensor(weight, dtype='float32')
else:
self.weight = None
def forward(self, logit, label, semantic_weights=None):
"""
Forward computation.
Args:
logit (Tensor): Logit tensor, the data type is float32, float64. Shape is
(N, C), where C is number of classes, and if shape is more than 2D, this
is (N, C, D1, D2,..., Dk), k >= 1.
label (Tensor): Label tensor, the data type is int64. Shape is (N), where each
value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
(N, D1, D2,..., Dk), k >= 1.
semantic_weights (Tensor, optional): Weights about loss for each pixels,
shape is the same as label. Default: None.
Returns:
(Tensor): The average loss.
"""
channel_axis = 1 if self.data_format == 'NCHW' else -1
if self.weight is not None and logit.shape[channel_axis] != len(
self.weight):
raise ValueError(
'The number of weights = {} must be the same as the number of classes = {}.'
.format(len(self.weight), logit.shape[channel_axis]))
if channel_axis == 1:
logit = paddle.transpose(logit, [0, 2, 3, 1])
label = label.astype('int64')
# In F.cross_entropy, the ignore_index is invalid, which needs to be fixed.
# When there is 255 in the label and paddle version <= 2.1.3, the cross_entropy OP will report an error, which is fixed in paddle develop version.
loss = F.cross_entropy(
logit,
label,
ignore_index=self.ignore_index,
reduction='none',
weight=self.weight)
return self._post_process_loss(logit, label, semantic_weights, loss)
def _post_process_loss(self, logit, label, semantic_weights, loss):
"""
Consider mask and top_k to calculate the final loss.
Args:
logit (Tensor): Logit tensor, the data type is float32, float64. Shape is
(N, C), where C is number of classes, and if shape is more than 2D, this
is (N, C, D1, D2,..., Dk), k >= 1.
label (Tensor): Label tensor, the data type is int64. Shape is (N), where each
value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
(N, D1, D2,..., Dk), k >= 1.
semantic_weights (Tensor, optional): Weights about loss for each pixels,
shape is the same as label.
loss (Tensor): Loss tensor which is the output of cross_entropy. If soft_label
is False in cross_entropy, the shape of loss should be the same as the label.
If soft_label is True in cross_entropy, the shape of loss should be
(N, D1, D2,..., Dk, 1).
Returns:
(Tensor): The average loss.
"""
mask = label != self.ignore_index
mask = paddle.cast(mask, 'float32')
label.stop_gradient = True
mask.stop_gradient = True
if loss.ndim > mask.ndim:
loss = paddle.squeeze(loss, axis=-1)
loss = loss * mask
if semantic_weights is not None:
loss = loss * semantic_weights
if self.weight is not None:
_one_hot = F.one_hot(label, logit.shape[-1])
coef = paddle.sum(_one_hot * self.weight, axis=-1)
else:
coef = paddle.ones_like(label)
if self.top_k_percent_pixels == 1.0:
avg_loss = paddle.mean(loss) / (paddle.mean(mask * coef) + self.EPS)
else:
loss = loss.reshape((-1, ))
top_k_pixels = int(self.top_k_percent_pixels * loss.numel())
loss, indices = paddle.topk(loss, top_k_pixels)
coef = coef.reshape((-1, ))
coef = paddle.gather(coef, indices)
coef.stop_gradient = True
coef = coef.astype('float32')
avg_loss = loss.mean() / (paddle.mean(coef) + self.EPS)
return avg_loss
@manager.LOSSES.add_component
class DistillCrossEntropyLoss(CrossEntropyLoss):
"""
The implementation of distill cross entropy loss.
Args:
weight (tuple|list|ndarray|Tensor, optional): A manual rescaling weight
given to each class. Its length must be equal to the number of classes.
Default ``None``.
ignore_index (int64, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
top_k_percent_pixels (float, optional): the value lies in [0.0, 1.0].
When its value < 1.0, only compute the loss for the top k percent pixels
(e.g., the top 20% pixels). This is useful for hard pixel mining.
Default ``1.0``.
data_format (str, optional): The tensor format to use, 'NCHW' or 'NHWC'.
Default ``'NCHW'``.
"""
def __init__(self,
weight=None,
ignore_index=255,
top_k_percent_pixels=1.0,
data_format='NCHW'):
super().__init__(weight, ignore_index, top_k_percent_pixels,
data_format)
def forward(self,
student_logit,
teacher_logit,
label,
semantic_weights=None):
"""
Forward computation.
Args:
student_logit (Tensor): Logit tensor, the data type is float32, float64. Shape is
(N, C), where C is number of classes, and if shape is more than 2D, this
is (N, C, D1, D2,..., Dk), k >= 1.
teacher_logit (Tensor): Logit tensor, the data type is float32, float64. The shape
is the same as the student_logit.
label (Tensor): Label tensor, the data type is int64. Shape is (N), where each
value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
(N, D1, D2,..., Dk), k >= 1.
semantic_weights (Tensor, optional): Weights about loss for each pixels,
shape is the same as label. Default: None.
"""
if student_logit.shape != teacher_logit.shape:
raise ValueError(
'The shape of student_logit = {} must be the same as the shape of teacher_logit = {}.'
.format(student_logit.shape, teacher_logit.shape))
channel_axis = 1 if self.data_format == 'NCHW' else -1
if self.weight is not None and student_logit.shape[channel_axis] != len(
self.weight):
raise ValueError(
'The number of weights = {} must be the same as the number of classes = {}.'
.format(len(self.weight), student_logit.shape[channel_axis]))
if channel_axis == 1:
student_logit = paddle.transpose(student_logit, [0, 2, 3, 1])
teacher_logit = paddle.transpose(teacher_logit, [0, 2, 3, 1])
teacher_logit = F.softmax(teacher_logit)
loss = F.cross_entropy(
student_logit,
teacher_logit,
weight=self.weight,
reduction='none',
soft_label=True)
return self._post_process_loss(student_logit, label, semantic_weights,
loss)