Currently, the available primitives are as follows:
['sigpro.SigPro',
'sigpro.aggregations.amplitude.statistical.crest_factor',
'sigpro.aggregations.amplitude.statistical.kurtosis',
'sigpro.aggregations.amplitude.statistical.mean',
'sigpro.aggregations.amplitude.statistical.rms',
'sigpro.aggregations.amplitude.statistical.skew',
'sigpro.aggregations.amplitude.statistical.std',
'sigpro.aggregations.amplitude.statistical.var',
'sigpro.aggregations.frequency.band.band_mean',
'sigpro.transformations.amplitude.identity.identity',
'sigpro.transformations.amplitude.spectrum.power_spectrum',
'sigpro.transformations.frequency.band.frequency_band',
'sigpro.transformations.frequency.fft.fft',
'sigpro.transformations.frequency.fft.fft_real',
'sigpro.transformations.frequency_time.stft.stft',
'sigpro.transformations.frequency_time.stft.stft_real']
path: sigpro.SigPro
description : Please see the SigPro page for more detailed documentation.
argument | type | description |
---|---|---|
parameters | ||
See pipeline documentation | ||
hyperparameters | ||
keep_columns | bool, list | If bool, whether to keep non-feature columns. If list, keep the columns in the list. |
values_column_name | str | Name of signal values column in input. |
transformations | list | List of transformations to apply sequentially before applying aggregations in parallel. |
aggregations | list | List of aggregations to apply in parallel after all transformations are applied (in sequence). |
input_is_dataframe | bool | Whether the input is a pandas DataFrame. Defaults to True. |
output | ||
See Documentation |
path: sigpro.transformations.amplitude.identity.identity
description : This primitive simply returns the input amplitude values as its output.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
hyperparameters | ||
N/A | ||
output | ||
amplitude_values | numpy.ndarray | Output (identity) signal amplitude values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([[1,2,3,4,5]])
transformed_data = run_primitive(
'sigpro.transformations.amplitude.identity.identity',
amplitude_values= data
)
transformed_data
path: sigpro.transformations.amplitude.spectrum.power_spectrum
description : This primitive applies an RFFT on the amplitude values and return the real components.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
sampling_frequency | int, float | Sampling frequency value passed in Hz. |
hyperparameters | ||
N/A | ||
output | ||
amplitude_values | numpy.ndarray | Output real components |
frequency_values | numpy.ndarray | Frequency values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([[1,2,3,4,5]])
frequency = 1000
transformed_data = run_primitive(
'sigpro.transformations.amplitude.spectrum.power_spectrum',
amplitude_values= data,
sampling_frequency = frequency
)
transformed_data, freq_values
path: sigpro.transformations.frequency.band.frequency_band
description : This primitive filters between a high and low band frequency and return the amplitude values and frequency values for those.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
frequency_values | numpy.ndarray | Input frequency values passed in Hz. |
hyperparameters | ||
low | int | Lower band frequency |
high | int | Higher band frequency |
output | ||
amplitude_values | numpy.ndarray | Output real components |
frequency_values | numpy.ndarray | Frequency values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([[1,2,3,4,5]])
frequency_values = np.array([[70,140,210, 280, 350]])
transformed_data, freq_values = run_primitive(
'sigpro.transformations.frequency.band.frequency_band',
amplitude_values= data,
frequency_values = frequency_values,
low = 100,
high = 300
)
transformed_data, freq_values,
path: sigpro.transformations.frequency.fft.fft
description : This primitive applies an FFT on the amplitude values using the discrete Fourier transform in numpy
.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
sampling_frequency | int, float | Sampling frequency value passed in Hz. |
hyperparameters | ||
N/A | ||
output | ||
amplitude_values | numpy.ndarray | Output all components |
frequency_values | numpy.ndarray | Frequency values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([[1,2,3,4,5]])
frequency = 1000
transformed_data, freq_values = run_primitive(
'sigpro.transformations.frequency.fft.fft',
amplitude_values= data,
sampling_frequency = frequency
)
transformed_data, freq_values
path: sigpro.transformations.frequency.fft.fft_real
description : This primitive applies an FFT on the amplitude values using the discrete Fourier transform in numpy
and returns the real components.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
sampling_frequency | int, float | Sampling frequency value passed in Hz. |
hyperparameters | ||
N/A | ||
output | ||
amplitude_values | numpy.ndarray | Output real components of FFT |
frequency_values | numpy.ndarray | Frequency values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([[1,2,3,4,5]])
frequency = 1000
transformed_data, freq_values = run_primitive(
'sigpro.transformations.frequency.fft.fft_real',
amplitude_values= data,
sampling_frequency = frequency
)
transformed_data, freq_values
path: sigpro.transformations.frequency.stft.stft
description : This primitive computes and returns the short time Fourier transform.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
sampling_frequency | int, float | Sampling frequency value passed in Hz. |
hyperparameters | ||
N/A | ||
output | ||
amplitude_values | numpy.ndarray | Output all components of STFT |
frequency_values | numpy.ndarray | Frequency values |
time_values | numpy.ndarray | Time values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([[1,2,3,4,5]])
frequency = 1000
transformed_data, freq_values, time_values = run_primitive(
'sigpro.transformations.frequency_time.stft.stft', #note: this is inconsistent
amplitude_values= data,
sampling_frequency = frequency
)
transformed_data, freq_values, time_values
path: sigpro.transformations.frequency.stft.stft_real
description : This primitive computes and returns the real part of the short time Fourier transform.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
sampling_frequency | int, float | Sampling frequency value passed in Hz. |
hyperparameters | ||
N/A | ||
output | ||
amplitude_values | numpy.ndarray | Output real components of STFT |
frequency_values | numpy.ndarray | Frequency values |
time_values | numpy.ndarray | Time values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([[1,2,3,4,5]])
frequency = 1000
transformed_data, freq_values, time_values = run_primitive(
'sigpro.transformations.frequency_time.stft.stft_real', #note: this is inconsistent
amplitude_values= data,
sampling_frequency = frequency
)
transformed_data, freq_values, time_values
path: sigpro.aggregation.amplitude.statistical.mean
description : This primitive computes and returns the arithmetic mean of the input values.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
hyperparameters | ||
N/A | ||
output | ||
mean_value | float | Output mean of amplitude values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([1,2,3,4,5])
output = run_primitive(
'sigpro.aggregations.amplitude.statistical.mean',
amplitude_values= data,
)
output
path: sigpro.aggregation.amplitude.statistical.std
description : This primitive computes and returns the standard deviation of the input values.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
hyperparameters | ||
N/A | ||
output | ||
std_value | float | Output standard deviation of amplitude values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([1,2,3,4,5])
output = run_primitive(
'sigpro.aggregations.amplitude.statistical.std',
amplitude_values= data,
)
output
path: sigpro.aggregation.amplitude.statistical.std
description : This primitive computes and returns the kurtosis of the input values.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
hyperparameters | ||
fisher | bool | If True (default), use Fisher definition (normal 0.0). If False, use Pearson definition (normal 3.0). |
bias | bool | If False, correct calculations for statistical bias. Defaults to True. |
output | ||
kurtosis_value | float | Output kurtosis of amplitude values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([1,2,3,4,5])
output = run_primitive(
'sigpro.aggregations.amplitude.statistical.kurtosis',
amplitude_values= data,
fisher = True,
bias = True
)
output
path: sigpro.aggregation.amplitude.statistical.var
description : This primitive computes and returns the variance of the input values.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
hyperparameters | ||
N/A | ||
output | ||
var_value | float | Output variance of amplitude values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([1,2,3,4,5])
output = run_primitive(
'sigpro.aggregations.amplitude.statistical.var',
amplitude_values= data,
)
output
path: sigpro.aggregation.amplitude.statistical.rms
description : This primitive computes and returns the root mean square (RMS) of the input values.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
hyperparameters | ||
N/A | ||
output | ||
rms_value | float | Output RMS of amplitude values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([1,2,3,4,5])
output = run_primitive(
'sigpro.aggregations.amplitude.statistical.rms',
amplitude_values= data,
)
output
path: sigpro.aggregation.amplitude.statistical.skew
description : This primitive computes and returns the skew of the input values.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
hyperparameters | ||
N/A | ||
output | ||
skew_value | float | Output skew of amplitude values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([1,2,3,4,5])
output = run_primitive(
'sigpro.aggregations.amplitude.statistical.skew',
amplitude_values= data,
)
output
path: sigpro.aggregation.amplitude.statistical.crest_factor
description : This primitive computes and returns the crest factor (ratio of peak to RMS) of the input values.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
hyperparameters | ||
N/A | ||
output | ||
crest_factor_value | float | Output crest factor of amplitude values |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([1,2,3,4,5])
output = run_primitive(
'sigpro.aggregations.amplitude.statistical.crest_factor',
amplitude_values= data,
)
output
path: sigpro.aggregations.frequency.band.band_mean
description : This primitive filters between a high and low band and computes the mean value for this specific band.
argument | type | description |
---|---|---|
parameters | ||
amplitude_values | numpy.ndarray | Input signal amplitude values |
frequency_values | numpy.ndarray | Input frequency values passed in Hz. |
hyperparameters | ||
min_frequency | float | Lower band threshold. |
max_frequency | float | Upper band threshold. |
output | ||
value | float | Output mean of amplitude values within frequency band. |
import numpy as np
from sigpro.contributing import run_primitive
data = np.array([[1,2,3,4,5]])
frequency_values = np.array([[70,140,210, 280, 350]])
output = run_primitive(
'sigpro.aggregations.frequency.band.band_mean',
amplitude_values= data,
frequency_values = frequency_values,
min_frequency = 100,
max_frequency = 300
)
output