-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
79 lines (62 loc) · 2.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import matplotlib.pyplot as plt
import numpy as np
import itertools
from sklearn.metrics import confusion_matrix, classification_report, recall_score, roc_auc_score
import pandas as pd
import seaborn as sns
def score_fn(gt, pred):
return 0.1 * recall_score(gt, pred, average='macro', zero_division=0) + 0.9 * roc_auc_score(gt, pred, multi_class='ovo')
def plot_confusion_matrix(y_true,
y_pred,
target_names=['0', '1'],
title='Confusion matrix',
cmap='Purples',
normalize=True):
cm = confusion_matrix(y_true, y_pred)
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
if cmap is None:
cmap = plt.get_cmap('Blues')
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
plt.show()
print(classification_report(y_true, y_pred))
print(f'target: {score_fn(y_true, y_pred)}')
def plot_feature_importance(importance, names, model_type='unk', figsize=(10,10)):
#Create arrays from feature importance and feature names
feature_importance = np.array(importance)
feature_names = np.array(names)
#Create a DataFrame using a Dictionary
data={'feature_names':feature_names,'feature_importance':feature_importance}
fi_df = pd.DataFrame(data)
#Sort the DataFrame in order decreasing feature importance
fi_df.sort_values(by=['feature_importance'], ascending=False,inplace=True)
#Define size of bar plot
plt.figure(figsize=figsize)
#Plot Searborn bar chart
sns.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names'])
#Add chart labels
plt.title(model_type + 'FEATURE IMPORTANCE')
plt.xlabel('FEATURE IMPORTANCE')
plt.ylabel('FEATURE NAMES')