-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProntoWS.py
195 lines (157 loc) · 7.84 KB
/
ProntoWS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from transformers import AutoTokenizer, AutoModelForMaskedLM
import numpy as np
import os
device = "cuda" if torch.cuda.is_available() else "cpu"
device = "mps" if torch.backends.mps.is_available() else device
import matplotlib.pyplot as plt
plt.style.use('tableau-colorblind10')
class ProntoWS(torch.nn.Module):
def __init__(self,
template="[1] [MASK] [2].",
special_tokens=None, # ("[R1]", "[R2]")
pretrained_model="FacebookAI/bert-large",
init_token=None,
noise_scaling=1e-1,
l1_reg=1e-5):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
self.model = AutoModelForMaskedLM.from_pretrained(pretrained_model).to(device)
self.template = template.replace("[MASK]", self.tokenizer.mask_token)
self.l1_reg = l1_reg
self.pretrained_model = pretrained_model
if "roberta" in self.pretrained_model.lower():
self.plm_num_embeddings = self.model.roberta.embeddings.word_embeddings.num_embeddings
self.plm_embedding_dim = self.model.roberta.embeddings.word_embeddings.embedding_dim
else:
self.plm_num_embeddings = self.model.bert.embeddings.word_embeddings.num_embeddings
self.plm_embedding_dim = self.model.bert.embeddings.word_embeddings.embedding_dim
self.noise_scaling = noise_scaling
for param in self.model.parameters():
param.requires_grad = False
self.verbalizer = torch.nn.Parameter(
torch.nn.init.xavier_uniform_(torch.empty(1, self.plm_num_embeddings))
)
self.filter = torch.nn.Parameter(
torch.nn.init.xavier_uniform_(torch.empty(1, self.plm_num_embeddings))
)
self.special_tokens = None
# SPECIAL TOKENS
if special_tokens:
self.special_tokens = special_tokens
self.tokenizer.add_tokens(self.special_tokens, special_tokens=True)
self.special_tokens_ids = self.tokenizer.convert_tokens_to_ids(self.special_tokens) # converts tokens to tokenizer ids
self.soft_prompts = torch.nn.Parameter(torch.nn.init.xavier_uniform_(
torch.empty(len(self.special_tokens), self.plm_embedding_dim)), requires_grad=True)
if init_token:
init_token = self.tokenizer(init_token, add_special_tokens=False, padding=False)[
"input_ids"
]
with torch.no_grad():
self.verbalizer[0, init_token] = 1.0
def get_worst_tokens(self):
return list(
zip(
self.tokenizer.batch_decode(
torch.argsort(self.verbalizer, descending=False).squeeze().cpu().detach().numpy()[:10].reshape(-1,
1)),
torch.sort(torch.sigmoid(self.verbalizer), dim=-1, descending=False)[0][:, :10].tolist()[0]
)
)
def get_top_tokens(self):
return list(
zip(
self.tokenizer.batch_decode(torch.argsort(self.verbalizer, descending=True).squeeze().cpu().detach().numpy()[:10].reshape(-1, 1)),
torch.sort(torch.sigmoid(self.verbalizer), dim=-1, descending=True)[0][:, :10].tolist()[0]
)
)
def reg(self):
return self.l1_reg * (
torch.sum(torch.abs(torch.sigmoid(self.verbalizer))) +
torch.sum(torch.abs(torch.sigmoid(self.filter)))
)
def generate_word_cloud(self, filename, top_tokens=30):
# Convert tensor to numpy array
tensor_array = (torch.sigmoid(self.verbalizer))[0].cpu().detach().numpy()
# Get the indices of the highest values in the tensor
top_indices = np.argsort(tensor_array)[::-1][:20] # Adjust the number of tokens as needed
# Create a dictionary of tokens and their importance scores
token_importance = {self.tokenizer.decode(i): tensor_array[i] for i in top_indices}
# Generate the word cloud
wordcloud = WordCloud(
width=450, height=450, background_color="white", min_font_size=10
).generate_from_frequencies(token_importance)
# Display the word cloud
plt.figure(figsize=(4, 4))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
#plt.show()
plt.savefig(f'{filename}.png')
def forward(self, x, prefixes=None, training=False):
# x: np.array, pairs of (child, parent) (str)
sentences = list(map(lambda pair: self.template.replace("[1]", pair[0]).replace("[2]", pair[1]), x))
# print(sentences)
if prefixes is not None:
assert len(prefixes) == len(sentences)
sentences = list(map(lambda x: x[1] + sentences[x[0]], enumerate(prefixes)))
#print(sentences[0])
tok = self.tokenizer(
sentences,
add_special_tokens=True,
padding=True,
return_tensors="pt",
)["input_ids"].to(device)
special_token_ids = []
attention_mask = 1 - tok.eq(self.tokenizer.pad_token_id).int()
if self.special_tokens:
for i, t in enumerate(self.special_tokens):
special_token_ids.append(torch.nonzero(
tok == self.special_tokens_ids[i], as_tuple=True
))
tok[special_token_ids[i]] = self.tokenizer.pad_token_id
# tok[special_token_index_2] = self.tokenizer.pad_token_id
if "roberta" in self.pretrained_model.lower():
inputs_embeds = self.model.roberta.embeddings.word_embeddings(tok.int())
else:
inputs_embeds = self.model.bert.embeddings.word_embeddings(tok.int())
# reparametrization trick on special tokens (soft prompts)
if self.special_tokens:
for i, t in enumerate(self.special_tokens):
inputs_embeds[special_token_ids[i]] = inputs_embeds[special_token_ids[i]] * 0 + self.soft_prompts[i]
logits = self.model(
input_ids=None,
attention_mask=attention_mask,
token_type_ids=None,
inputs_embeds=inputs_embeds,
).logits
mask_token_index = torch.nonzero(
tok == self.tokenizer.mask_token_id, as_tuple=True
)
mask_logits = logits[mask_token_index]
#if training:
# std = torch.std(mask_logits)
# noise = torch.randn_like(mask_logits) * std * self.noise_scaling
# mask_logits = mask_logits + noise
mask_logits = (torch.exp(mask_logits) * torch.sigmoid(self.filter)) / torch.sum(torch.exp(mask_logits) * torch.sigmoid(self.filter), dim=-1).reshape(-1, 1)
# Compute rescaled logits
rescaled_logits = torch.sum(
torch.sigmoid(self.verbalizer) * mask_logits, # * torch.sigmoid(self.filter),
dim=-1,
)
return rescaled_logits
def save(self, filepath):
torch.save(self.verbalizer, os.path.join(filepath, "verbalizer.pt"))
torch.save(self.filter, os.path.join(filepath, "filter.pt"))
if self.special_tokens:
torch.save(self.soft_prompts, os.path.join(filepath, "soft_prompts.pt"))
#torch.save(self.filter, os.path.join(filepath, "filter.pt"))
@classmethod
def load(cls, filepath, *args, **kwargs):
model = cls(*args, **kwargs)
model.verbalizer = torch.load(os.path.join(filepath, "verbalizer.pt"), map_location=device)
model.filter = torch.load(os.path.join(filepath, "filter.pt"), map_location=device)
if os.path.exists(os.path.join(filepath, "soft_prompts.pt")):
model.soft_prompts = torch.load(os.path.join(filepath, "soft_prompts.pt"), map_location=device)
return model