-
Notifications
You must be signed in to change notification settings - Fork 123
/
multi_walker.py
658 lines (558 loc) · 25.4 KB
/
multi_walker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import copy
import math
import sys
import gym
import numpy as np
from gym import spaces
from gym.utils import colorize, seeding
from six.moves import xrange
import Box2D
from Box2D.b2 import (circleShape, contactListener, edgeShape, fixtureDef, polygonShape,
revoluteJointDef)
from madrl_environments import AbstractMAEnv, Agent
from rltools.util import EzPickle
MAX_AGENTS = 40
FPS = 50
SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well
MOTORS_TORQUE = 80
SPEED_HIP = 4
SPEED_KNEE = 6
LIDAR_RANGE = 160 / SCALE
INITIAL_RANDOM = 5
HULL_POLY = [(-30, +9), (+6, +9), (+34, +1), (+34, -8), (-30, -8)]
LEG_DOWN = -8 / SCALE
LEG_W, LEG_H = 8 / SCALE, 34 / SCALE
PACKAGE_POLY = [(-120, 5), (120, 5), (120, -5), (-120, -5)]
PACKAGE_LENGTH = 240
VIEWPORT_W = 600
VIEWPORT_H = 400
TERRAIN_STEP = 14 / SCALE
TERRAIN_LENGTH = 200 # in steps
TERRAIN_HEIGHT = VIEWPORT_H / SCALE / 4
TERRAIN_GRASS = 10 # low long are grass spots, in steps
TERRAIN_STARTPAD = 20 # in steps
FRICTION = 2.5
WALKER_SEPERATION = 10 # in steps
class ContactDetector(contactListener):
def __init__(self, env):
contactListener.__init__(self)
self.env = env
def BeginContact(self, contact):
# if walkers fall on ground
for i, walker in enumerate(self.env.walkers):
if walker.hull == contact.fixtureA.body:
if self.env.package != contact.fixtureB.body:
self.env.fallen_walkers[i] = True
if walker.hull == contact.fixtureB.body:
if self.env.package != contact.fixtureA.body:
self.env.fallen_walkers[i] = True
# if package is on the ground
if self.env.package == contact.fixtureA.body:
if contact.fixtureB.body not in [w.hull for w in self.env.walkers]:
self.env.game_over = True
if self.env.package == contact.fixtureB.body:
if contact.fixtureA.body not in [w.hull for w in self.env.walkers]:
self.env.game_over = True
# self.env.game_over = True
for walker in self.env.walkers:
for leg in [walker.legs[1], walker.legs[3]]:
if leg in [contact.fixtureA.body, contact.fixtureB.body]:
leg.ground_contact = True
def EndContact(self, contact):
for walker in self.env.walkers:
for leg in [walker.legs[1], walker.legs[3]]:
if leg in [contact.fixtureA.body, contact.fixtureB.body]:
leg.ground_contact = False
class BipedalWalker(Agent):
def __init__(self, world, init_x=TERRAIN_STEP * TERRAIN_STARTPAD / 2,
init_y=TERRAIN_HEIGHT + 2 * LEG_H, n_walkers=2, one_hot=False):
self.world = world
self._n_walkers = n_walkers
self.one_hot = one_hot
self.hull = None
self.init_x = init_x
self.init_y = init_y
self._seed()
def _destroy(self):
if not self.hull:
return
self.world.DestroyBody(self.hull)
self.hull = None
for leg in self.legs:
self.world.DestroyBody(leg)
self.legs = []
self.joints = []
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _reset(self):
self._destroy()
init_x = self.init_x
init_y = self.init_y
self.hull = self.world.CreateDynamicBody(
position=(init_x, init_y),
fixtures=fixtureDef(
shape=polygonShape(vertices=[(x / SCALE, y / SCALE) for x, y in HULL_POLY]),
density=5.0,
friction=0.1,
categoryBits=0x002,
#maskBits=(0x001 & 0x002), # collide only with ground
restitution=0.0) # 0.99 bouncy
)
self.hull.color1 = (0.5, 0.4, 0.9)
self.hull.color2 = (0.3, 0.3, 0.5)
self.hull.ApplyForceToCenter((self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM), 0),
True)
self.legs = []
self.joints = []
for i in [-1, +1]:
leg = self.world.CreateDynamicBody(
position=(init_x, init_y - LEG_H / 2 - LEG_DOWN),
angle=(i * 0.05),
fixtures=fixtureDef(shape=polygonShape(box=(LEG_W / 2, LEG_H / 2)), density=1.0,
restitution=0.0, categoryBits=0x002,
maskBits=0x001) # collide with ground only
)
leg.color1 = (0.6 - i / 10., 0.3 - i / 10., 0.5 - i / 10.)
leg.color2 = (0.4 - i / 10., 0.2 - i / 10., 0.3 - i / 10.)
rjd = revoluteJointDef(
bodyA=self.hull,
bodyB=leg,
localAnchorA=(0, LEG_DOWN),
localAnchorB=(0, LEG_H / 2),
enableMotor=True,
enableLimit=True,
maxMotorTorque=MOTORS_TORQUE,
motorSpeed=i,
lowerAngle=-0.8,
upperAngle=1.1,)
self.legs.append(leg)
self.joints.append(self.world.CreateJoint(rjd))
lower = self.world.CreateDynamicBody(
position=(init_x, init_y - LEG_H * 3 / 2 - LEG_DOWN), angle=(i * 0.05),
fixtures=fixtureDef(shape=polygonShape(box=(0.8 * LEG_W / 2, LEG_H / 2)),
density=1.0, restitution=0.0, categoryBits=0x0020,
maskBits=0x001))
lower.color1 = (0.6 - i / 10., 0.3 - i / 10., 0.5 - i / 10.)
lower.color2 = (0.4 - i / 10., 0.2 - i / 10., 0.3 - i / 10.)
rjd = revoluteJointDef(
bodyA=leg,
bodyB=lower,
localAnchorA=(0, -LEG_H / 2),
localAnchorB=(0, LEG_H / 2),
enableMotor=True,
enableLimit=True,
maxMotorTorque=MOTORS_TORQUE,
motorSpeed=1,
lowerAngle=-1.6,
upperAngle=-0.1,)
lower.ground_contact = False
self.legs.append(lower)
self.joints.append(self.world.CreateJoint(rjd))
self.drawlist = self.legs + [self.hull]
class LidarCallback(Box2D.b2.rayCastCallback):
def ReportFixture(self, fixture, point, normal, fraction):
if (fixture.filterData.categoryBits & 1) == 0:
return 1
self.p2 = point
self.fraction = fraction
return 0
self.lidar = [LidarCallback() for _ in range(10)]
def apply_action(self, action):
self.joints[0].motorSpeed = float(SPEED_HIP * np.sign(action[0]))
self.joints[0].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[0]), 0, 1))
self.joints[1].motorSpeed = float(SPEED_KNEE * np.sign(action[1]))
self.joints[1].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[1]), 0, 1))
self.joints[2].motorSpeed = float(SPEED_HIP * np.sign(action[2]))
self.joints[2].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[2]), 0, 1))
self.joints[3].motorSpeed = float(SPEED_KNEE * np.sign(action[3]))
self.joints[3].maxMotorTorque = float(MOTORS_TORQUE * np.clip(np.abs(action[3]), 0, 1))
def get_observation(self):
pos = self.hull.position
vel = self.hull.linearVelocity
for i in range(10):
self.lidar[i].fraction = 1.0
self.lidar[i].p1 = pos
self.lidar[i].p2 = (pos[0] + math.sin(1.5 * i / 10.0) * LIDAR_RANGE,
pos[1] - math.cos(1.5 * i / 10.0) * LIDAR_RANGE)
self.world.RayCast(self.lidar[i], self.lidar[i].p1, self.lidar[i].p2)
state = [
self.hull.angle, # Normal angles up to 0.5 here, but sure more is possible.
2.0 * self.hull.angularVelocity / FPS,
0.3 * vel.x * (VIEWPORT_W / SCALE) / FPS, # Normalized to get -1..1 range
0.3 * vel.y * (VIEWPORT_H / SCALE) / FPS,
self.joints[0].
angle, # This will give 1.1 on high up, but it's still OK (and there should be spikes on hiting the ground, that's normal too)
self.joints[0].speed / SPEED_HIP,
self.joints[1].angle + 1.0,
self.joints[1].speed / SPEED_KNEE,
1.0 if self.legs[1].ground_contact else 0.0,
self.joints[2].angle,
self.joints[2].speed / SPEED_HIP,
self.joints[3].angle + 1.0,
self.joints[3].speed / SPEED_KNEE,
1.0 if self.legs[3].ground_contact else 0.0
]
state += [l.fraction for l in self.lidar]
assert len(state) == 24
return state
@property
def observation_space(self):
# 24 original obs (joints, etc), 2 displacement obs for each neighboring walker, 3 for package, 1 ID
idx = MAX_AGENTS if self.one_hot else 1 # TODO
return spaces.Box(low=-np.inf, high=np.inf, shape=(24 + 4 + 3 + idx,))
@property
def action_space(self):
return spaces.Box(low=-1, high=1, shape=(4,))
class MultiWalkerEnv(AbstractMAEnv, EzPickle):
metadata = {'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': FPS}
hardcore = False
def __init__(self, n_walkers=2, position_noise=1e-3, angle_noise=1e-3, reward_mech='local',
forward_reward=1.0, fall_reward=-100.0, drop_reward=-100.0, terminate_on_fall=True,
one_hot=False):
EzPickle.__init__(self, n_walkers, position_noise, angle_noise, reward_mech, forward_reward,
fall_reward, drop_reward, terminate_on_fall, one_hot)
self.n_walkers = n_walkers
self.position_noise = position_noise
self.angle_noise = angle_noise
self._reward_mech = reward_mech
self.forward_reward = forward_reward
self.fall_reward = fall_reward
self.drop_reward = drop_reward
self.terminate_on_fall = terminate_on_fall
self.one_hot = one_hot
self.setup()
def get_param_values(self):
return self.__dict__
def setup(self):
self.seed()
self.viewer = None
self.world = Box2D.b2World()
self.terrain = None
init_x = TERRAIN_STEP * TERRAIN_STARTPAD / 2
init_y = TERRAIN_HEIGHT + 2 * LEG_H
self.start_x = [
init_x + WALKER_SEPERATION * i * TERRAIN_STEP for i in range(self.n_walkers)
]
self.walkers = [
BipedalWalker(self.world, init_x=sx, init_y=init_y, one_hot=self.one_hot)
for sx in self.start_x
]
self.package_scale = self.n_walkers / 1.75
self.package_length = PACKAGE_LENGTH / SCALE * self.package_scale
self.total_agents = self.n_walkers
self.prev_shaping = np.zeros(self.n_walkers)
self.prev_package_shaping = 0.0
self.terrain_length = int(TERRAIN_LENGTH * self.n_walkers * 1 / 8.)
self.reset()
@property
def agents(self):
return self.walkers
@property
def reward_mech(self):
return self._reward_mech
def seed(self, seed=None):
self.np_random, seed_ = seeding.np_random(seed)
return [seed_]
def _destroy(self):
if not self.terrain:
return
self.world.contactListener = None
for t in self.terrain:
self.world.DestroyBody(t)
self.terrain = []
self.world.DestroyBody(self.package)
self.package = None
for walker in self.walkers:
walker._destroy()
def reset(self):
self._destroy()
self.world.contactListener_bug_workaround = ContactDetector(self)
self.world.contactListener = self.world.contactListener_bug_workaround
self.game_over = False
self.fallen_walkers = np.zeros(self.n_walkers, dtype=np.bool)
self.prev_shaping = np.zeros(self.n_walkers)
self.prev_package_shaping = 0.0
self.scroll = 0.0
self.lidar_render = 0
W = VIEWPORT_W / SCALE
H = VIEWPORT_H / SCALE
self._generate_package()
self._generate_terrain(self.hardcore)
self._generate_clouds()
self.drawlist = copy.copy(self.terrain)
self.drawlist += [self.package]
for walker in self.walkers:
walker._reset()
self.drawlist += walker.legs
self.drawlist += [walker.hull]
return self.step(np.array([0, 0, 0, 0] * self.n_walkers))[0]
def step(self, actions):
act_vec = np.reshape(actions, (self.n_walkers, 4))
assert len(act_vec) == self.n_walkers
for i in range(self.n_walkers):
self.walkers[i].apply_action(act_vec[i])
self.world.Step(1.0 / FPS, 6 * 30, 2 * 30)
obs = [walker.get_observation() for walker in self.walkers]
xpos = np.zeros(self.n_walkers)
obs = []
done = False
rewards = np.zeros(self.n_walkers)
for i in range(self.n_walkers):
pos = self.walkers[i].hull.position
x, y = pos.x, pos.y
xpos[i] = x
wobs = self.walkers[i].get_observation()
nobs = []
for j in [i - 1, i + 1]:
# if no neighbor (for edge walkers)
if j < 0 or j == self.n_walkers:
nobs.append(0.0)
nobs.append(0.0)
else:
xm = (self.walkers[j].hull.position.x - x) / self.package_length
ym = (self.walkers[j].hull.position.y - y) / self.package_length
nobs.append(np.random.normal(xm, self.position_noise))
nobs.append(np.random.normal(ym, self.position_noise))
xd = (self.package.position.x - x) / self.package_length
yd = (self.package.position.y - y) / self.package_length
nobs.append(np.random.normal(xd, self.position_noise))
nobs.append(np.random.normal(yd, self.position_noise))
nobs.append(np.random.normal(self.package.angle, self.angle_noise))
# ID
if self.one_hot:
nobs.extend(np.eye(MAX_AGENTS)[i])
else:
nobs.append(float(i) / self.n_walkers)
obs.append(np.array(wobs + nobs))
#shaping = 130 * pos[0] / SCALE
shaping = 0.0
shaping -= 5.0 * abs(wobs[0])
rewards[i] = shaping - self.prev_shaping[i]
self.prev_shaping[i] = shaping
package_shaping = self.forward_reward * 130 * self.package.position.x / SCALE
rewards += (package_shaping - self.prev_package_shaping)
self.prev_package_shaping = package_shaping
self.scroll = xpos.mean() - VIEWPORT_W / SCALE / 5 - (self.n_walkers - 1
) * WALKER_SEPERATION * TERRAIN_STEP
done = False
if self.game_over or pos[0] < 0:
rewards += self.drop_reward
done = True
if pos[0] > (self.terrain_length - TERRAIN_GRASS) * TERRAIN_STEP:
done = True
rewards += self.fall_reward * self.fallen_walkers
if self.terminate_on_fall and np.sum(self.fallen_walkers) > 0:
done = True
if self.reward_mech == 'local':
return obs, rewards, done, {}
return obs, [rewards.mean()] * self.n_walkers, done, {}
def render(self, mode='human', close=False):
if close:
if self.viewer is not None:
self.viewer.close()
self.viewer = None
return
render_scale = 0.75
from gym.envs.classic_control import rendering
if self.viewer is None:
self.viewer = rendering.Viewer(VIEWPORT_W, VIEWPORT_H)
self.viewer.set_bounds(self.scroll,
VIEWPORT_W / SCALE * self.package_scale * render_scale + self.scroll,
0, VIEWPORT_H / SCALE * self.package_scale * render_scale)
self.viewer.draw_polygon([
(self.scroll, 0),
(self.scroll + VIEWPORT_W * self.package_scale / SCALE * render_scale, 0),
(self.scroll + VIEWPORT_W * self.package_scale / SCALE * render_scale,
VIEWPORT_H / SCALE * self.package_scale * render_scale),
(self.scroll, VIEWPORT_H / SCALE * self.package_scale * render_scale),
], color=(0.9, 0.9, 1.0))
for poly, x1, x2 in self.cloud_poly:
if x2 < self.scroll / 2:
continue
if x1 > self.scroll / 2 + VIEWPORT_W / SCALE * self.package_scale:
continue
self.viewer.draw_polygon([(p[0] + self.scroll / 2, p[1]) for p in poly], color=(1, 1,
1))
for poly, color in self.terrain_poly:
if poly[1][0] < self.scroll:
continue
if poly[0][0] > self.scroll + VIEWPORT_W / SCALE * self.package_scale:
continue
self.viewer.draw_polygon(poly, color=color)
self.lidar_render = (self.lidar_render + 1) % 100
i = self.lidar_render
for walker in self.walkers:
if i < 2 * len(walker.lidar):
l = walker.lidar[i] if i < len(walker.lidar) else walker.lidar[len(walker.lidar)
- i - 1]
self.viewer.draw_polyline([l.p1, l.p2], color=(1, 0, 0), linewidth=1)
for obj in self.drawlist:
for f in obj.fixtures:
trans = f.body.transform
if type(f.shape) is circleShape:
t = rendering.Transform(translation=trans * f.shape.pos)
self.viewer.draw_circle(f.shape.radius, 30, color=obj.color1).add_attr(t)
self.viewer.draw_circle(f.shape.radius, 30, color=obj.color2, filled=False,
linewidth=2).add_attr(t)
else:
path = [trans * v for v in f.shape.vertices]
self.viewer.draw_polygon(path, color=obj.color1)
path.append(path[0])
self.viewer.draw_polyline(path, color=obj.color2, linewidth=2)
flagy1 = TERRAIN_HEIGHT
flagy2 = flagy1 + 50 / SCALE
x = TERRAIN_STEP * 3
self.viewer.draw_polyline([(x, flagy1), (x, flagy2)], color=(0, 0, 0), linewidth=2)
f = [(x, flagy2), (x, flagy2 - 10 / SCALE), (x + 25 / SCALE, flagy2 - 5 / SCALE)]
self.viewer.draw_polygon(f, color=(0.9, 0.2, 0))
self.viewer.draw_polyline(f + [f[0]], color=(0, 0, 0), linewidth=2)
return self.viewer.render(return_rgb_array=mode == 'rgb_array')
def _generate_package(self):
init_x = np.mean(self.start_x)
init_y = TERRAIN_HEIGHT + 3 * LEG_H
self.package = self.world.CreateDynamicBody(
position=(init_x, init_y),
fixtures=fixtureDef(
shape=polygonShape(vertices=[(x * self.package_scale / SCALE, y / SCALE)
for x, y in PACKAGE_POLY]),
density=1.0,
friction=0.5,
categoryBits=0x004,
#maskBits=0x001, # collide only with ground
restitution=0.0) # 0.99 bouncy
)
self.package.color1 = (0.5, 0.4, 0.9)
self.package.color2 = (0.3, 0.3, 0.5)
def _generate_terrain(self, hardcore):
GRASS, STUMP, STAIRS, PIT, _STATES_ = range(5)
state = GRASS
velocity = 0.0
y = TERRAIN_HEIGHT
counter = TERRAIN_STARTPAD
oneshot = False
self.terrain = []
self.terrain_x = []
self.terrain_y = []
for i in range(self.terrain_length):
x = i * TERRAIN_STEP
self.terrain_x.append(x)
if state == GRASS and not oneshot:
velocity = 0.8 * velocity + 0.01 * np.sign(TERRAIN_HEIGHT - y)
if i > TERRAIN_STARTPAD:
velocity += self.np_random.uniform(-1, 1) / SCALE #1
y += velocity
elif state == PIT and oneshot:
counter = self.np_random.randint(3, 5)
poly = [
(x, y),
(x + TERRAIN_STEP, y),
(x + TERRAIN_STEP, y - 4 * TERRAIN_STEP),
(x, y - 4 * TERRAIN_STEP),
]
t = self.world.CreateStaticBody(fixtures=fixtureDef(
shape=polygonShape(vertices=poly), friction=FRICTION))
t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6)
self.terrain.append(t)
t = self.world.CreateStaticBody(fixtures=fixtureDef(shape=polygonShape(
vertices=[(p[0] + TERRAIN_STEP * counter, p[1]) for p in poly]),
friction=FRICTION))
t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6)
self.terrain.append(t)
counter += 2
original_y = y
elif state == PIT and not oneshot:
y = original_y
if counter > 1:
y -= 4 * TERRAIN_STEP
elif state == STUMP and oneshot:
counter = self.np_random.randint(1, 3)
poly = [
(x, y),
(x + counter * TERRAIN_STEP, y),
(x + counter * TERRAIN_STEP, y + counter * TERRAIN_STEP),
(x, y + counter * TERRAIN_STEP),
]
t = self.world.CreateStaticBody(fixtures=fixtureDef(
shape=polygonShape(vertices=poly), friction=FRICTION))
t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6)
self.terrain.append(t)
elif state == STAIRS and oneshot:
stair_height = +1 if self.np_random.rand() > 0.5 else -1
stair_width = self.np_random.randint(4, 5)
stair_steps = self.np_random.randint(3, 5)
original_y = y
for s in range(stair_steps):
poly = [
(x + (s * stair_width) * TERRAIN_STEP,
y + (s * stair_height) * TERRAIN_STEP),
(x + ((1 + s) * stair_width) * TERRAIN_STEP,
y + (s * stair_height) * TERRAIN_STEP),
(x + ((1 + s) * stair_width) * TERRAIN_STEP,
y + (-1 + s * stair_height) * TERRAIN_STEP),
(x + (s * stair_width) * TERRAIN_STEP,
y + (-1 + s * stair_height) * TERRAIN_STEP),
]
t = self.world.CreateStaticBody(fixtures=fixtureDef(
shape=polygonShape(vertices=poly), friction=FRICTION))
t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6)
self.terrain.append(t)
counter = stair_steps * stair_width
elif state == STAIRS and not oneshot:
s = stair_steps * stair_width - counter - stair_height
n = s / stair_width
y = original_y + (n * stair_height) * TERRAIN_STEP
oneshot = False
self.terrain_y.append(y)
counter -= 1
if counter == 0:
counter = self.np_random.randint(TERRAIN_GRASS / 2, TERRAIN_GRASS)
if state == GRASS and hardcore:
state = self.np_random.randint(1, _STATES_)
oneshot = True
else:
state = GRASS
oneshot = True
self.terrain_poly = []
for i in range(self.terrain_length - 1):
poly = [(self.terrain_x[i], self.terrain_y[i]),
(self.terrain_x[i + 1], self.terrain_y[i + 1])]
t = self.world.CreateStaticBody(fixtures=fixtureDef(
shape=edgeShape(vertices=poly),
friction=FRICTION,
categoryBits=0x0001,))
color = (0.3, 1.0 if i % 2 == 0 else 0.8, 0.3)
t.color1 = color
t.color2 = color
self.terrain.append(t)
color = (0.4, 0.6, 0.3)
poly += [(poly[1][0], 0), (poly[0][0], 0)]
self.terrain_poly.append((poly, color))
self.terrain.reverse()
def _generate_clouds(self):
# Sorry for the clouds, couldn't resist
self.cloud_poly = []
for i in range(self.terrain_length // 20):
x = self.np_random.uniform(0, self.terrain_length) * TERRAIN_STEP
y = VIEWPORT_H / SCALE * 3 / 4
poly = [(x + 15 * TERRAIN_STEP * math.sin(3.14 * 2 * a / 5) + self.np_random.uniform(
0, 5 * TERRAIN_STEP), y + 5 * TERRAIN_STEP * math.cos(3.14 * 2 * a / 5) +
self.np_random.uniform(0, 5 * TERRAIN_STEP)) for a in range(5)]
x1 = min([p[0] for p in poly])
x2 = max([p[0] for p in poly])
self.cloud_poly.append((poly, x1, x2))
if __name__ == "__main__":
n_walkers = 3
reward_mech = 'local'
env = MultiWalkerEnv(n_walkers=n_walkers, reward_mech=reward_mech)
env.reset()
for i in range(1000):
env.render()
a = np.array([env.agents[0].action_space.sample() for _ in range(n_walkers)])
o, r, done, _ = env.step(a)
print("\nStep:", i)
#print "Obs:", o
print("Rewards:", r)
#print "Term:", done
if done:
break