Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Loading ImageNet weights of MobileNetV3 #36

Open
CauchyComplete opened this issue May 24, 2022 · 2 comments
Open

Loading ImageNet weights of MobileNetV3 #36

CauchyComplete opened this issue May 24, 2022 · 2 comments

Comments

@CauchyComplete
Copy link

Hi,
When I try to load pretrained weights of MobileNetV3 (either -S or -L) to BiSeNetV1, this error appears.

	size mismatch for features.0.0.weight: copying a param with shape torch.Size([16, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 3, 3, 3]).
	size mismatch for features.0.1.weight: copying a param with shape torch.Size([16]) from checkpoint, the shape in current model is torch.Size([32]).
	size mismatch for features.0.1.bias: copying a param with shape torch.Size([16]) from checkpoint, the shape in current model is torch.Size([32]).
	size mismatch for features.0.1.running_mean: copying a param with shape torch.Size([16]) from checkpoint, the shape in current model is torch.Size([32]).
	size mismatch for features.0.1.running_var: copying a param with shape torch.Size([16]) from checkpoint, the shape in current model is torch.Size([32]).```

MobileNetV2-1.0 works fine.
Thanks.
@StuLiu
Copy link

StuLiu commented Jun 15, 2022

This is my inplemetation of mobilenetv3 modified from this repository.. And the pytorch pretrained model can be download here

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init

class hswish(nn.Module):
def forward(self, x):
out = x * F.relu6(x + 3, inplace=True) / 6
return out

class hsigmoid(nn.Module):
def forward(self, x):
out = F.relu6(x + 3, inplace=True) / 6
return out

class SeModule(nn.Module):
def init(self, in_size, reduction=4):
super(SeModule, self).init()
self.avg_pool = nn.AdaptiveAvgPool2d(1)

    self.se = nn.Sequential(
        nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False),
        nn.BatchNorm2d(in_size // reduction),
        nn.ReLU(inplace=True),
        nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False),
        nn.BatchNorm2d(in_size),
        hsigmoid()
    )

def forward(self, x):
    return x * self.se(x)

class Block(nn.Module):
"""expand + depthwise + pointwise"""

def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
    super(Block, self).__init__()
    self.stride = stride
    self.se = semodule

    self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False)
    self.bn1 = nn.BatchNorm2d(expand_size)
    self.nolinear1 = nolinear
    self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride,
                           padding=kernel_size // 2, groups=expand_size, bias=False)
    self.bn2 = nn.BatchNorm2d(expand_size)
    self.nolinear2 = nolinear
    self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False)
    self.bn3 = nn.BatchNorm2d(out_size)

    self.shortcut = nn.Sequential()
    if stride == 1 and in_size != out_size:
        self.shortcut = nn.Sequential(
            nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(out_size),
        )

def forward(self, x):
    out = self.nolinear1(self.bn1(self.conv1(x)))
    out = self.nolinear2(self.bn2(self.conv2(out)))
    out = self.bn3(self.conv3(out))
    if self.se is not None:
        out = self.se(out)
    out = out + self.shortcut(x) if self.stride == 1 else out
    return out

mobilenetv3_settings = {
'small': [[0, 1, 2, 4, 11], [12, 24, 40, 96]],
'large': [[0, 2, 4, 7, 15], [24, 40, 80, 160]],
}

class MobileNetV3(nn.Module):
def init(self, model_name='large'):
super(MobileNetV3, self).init()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = hswish()

    if model_name == 'small':
        self.bneck = nn.Sequential(
            Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2),
            Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2),
            Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1),
            Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
        )
    elif model_name == 'large':
        self.bneck = nn.Sequential(
            Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1),
            Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2),
            Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1),
            Block(5, 24, 72, 40, nn.ReLU(inplace=True), SeModule(40), 2),
            Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
            Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
            Block(3, 40, 240, 80, hswish(), None, 2),
            Block(3, 80, 200, 80, hswish(), None, 1),
            Block(3, 80, 184, 80, hswish(), None, 1),
            Block(3, 80, 184, 80, hswish(), None, 1),
            Block(3, 80, 480, 112, hswish(), SeModule(112), 1),
            Block(3, 112, 672, 112, hswish(), SeModule(112), 1),
            Block(5, 112, 672, 160, hswish(), SeModule(160), 1),
            Block(5, 160, 672, 160, hswish(), SeModule(160), 2),
            Block(5, 160, 960, 160, hswish(), SeModule(160), 1),
        )
    else:
        raise Exception('not small or large')

    self.divs, self.channels = mobilenetv3_settings[model_name]
    self.init_params()

def init_params(self):
    for m in self.modules():
        if isinstance(m, nn.Conv2d):
            init.kaiming_normal_(m.weight, mode='fan_out')
            if m.bias is not None:
                init.constant_(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            init.constant_(m.weight, 1)
            init.constant_(m.bias, 0)
        elif isinstance(m, nn.Linear):
            init.normal_(m.weight, std=0.001)
            if m.bias is not None:
                init.constant_(m.bias, 0)

def forward(self, x):
    outs = []
    out = self.hs1(self.bn1(self.conv1(x)))
    for i in range(0, 4):
        out = self.bneck[self.divs[i]:self.divs[i + 1]](out)
        outs.append(out)
    return outs

if name == 'main':
model = MobileNetV3('small')
model.load_state_dict(torch.load('../../../checkpoints/backbones/mobilenet/mobilenetv3_small.pth',
map_location='cpu'), strict=False)
model.train()
_x = torch.randn(2, 3, 512, 512)
_outs = model(_x)
for y in _outs:
print(y.shape)

@StuLiu
Copy link

StuLiu commented Jun 16, 2022

This is my inplemetation of mobilenetv3 modified from this repository.. And the pytorch pretrained model can be download here

import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init

class hswish(nn.Module): def forward(self, x): out = x * F.relu6(x + 3, inplace=True) / 6 return out

class hsigmoid(nn.Module): def forward(self, x): out = F.relu6(x + 3, inplace=True) / 6 return out

class SeModule(nn.Module): def init(self, in_size, reduction=4): super(SeModule, self).init() self.avg_pool = nn.AdaptiveAvgPool2d(1)

    self.se = nn.Sequential(
        nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False),
        nn.BatchNorm2d(in_size // reduction),
        nn.ReLU(inplace=True),
        nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False),
        nn.BatchNorm2d(in_size),
        hsigmoid()
    )

def forward(self, x):
    return x * self.se(x)

class Block(nn.Module): """expand + depthwise + pointwise"""

def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
    super(Block, self).__init__()
    self.stride = stride
    self.se = semodule

    self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False)
    self.bn1 = nn.BatchNorm2d(expand_size)
    self.nolinear1 = nolinear
    self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride,
                           padding=kernel_size // 2, groups=expand_size, bias=False)
    self.bn2 = nn.BatchNorm2d(expand_size)
    self.nolinear2 = nolinear
    self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False)
    self.bn3 = nn.BatchNorm2d(out_size)

    self.shortcut = nn.Sequential()
    if stride == 1 and in_size != out_size:
        self.shortcut = nn.Sequential(
            nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(out_size),
        )

def forward(self, x):
    out = self.nolinear1(self.bn1(self.conv1(x)))
    out = self.nolinear2(self.bn2(self.conv2(out)))
    out = self.bn3(self.conv3(out))
    if self.se is not None:
        out = self.se(out)
    out = out + self.shortcut(x) if self.stride == 1 else out
    return out

mobilenetv3_settings = { 'small': [[0, 1, 2, 4, 11], [12, 24, 40, 96]], 'large': [[0, 2, 4, 7, 15], [24, 40, 80, 160]], }

class MobileNetV3(nn.Module): def init(self, model_name='large'): super(MobileNetV3, self).init() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.hs1 = hswish()

    if model_name == 'small':
        self.bneck = nn.Sequential(
            Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2),
            Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2),
            Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1),
            Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
        )
    elif model_name == 'large':
        self.bneck = nn.Sequential(
            Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1),
            Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2),
            Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1),
            Block(5, 24, 72, 40, nn.ReLU(inplace=True), SeModule(40), 2),
            Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
            Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
            Block(3, 40, 240, 80, hswish(), None, 2),
            Block(3, 80, 200, 80, hswish(), None, 1),
            Block(3, 80, 184, 80, hswish(), None, 1),
            Block(3, 80, 184, 80, hswish(), None, 1),
            Block(3, 80, 480, 112, hswish(), SeModule(112), 1),
            Block(3, 112, 672, 112, hswish(), SeModule(112), 1),
            Block(5, 112, 672, 160, hswish(), SeModule(160), 1),
            Block(5, 160, 672, 160, hswish(), SeModule(160), 2),
            Block(5, 160, 960, 160, hswish(), SeModule(160), 1),
        )
    else:
        raise Exception('not small or large')

    self.divs, self.channels = mobilenetv3_settings[model_name]
    self.init_params()

def init_params(self):
    for m in self.modules():
        if isinstance(m, nn.Conv2d):
            init.kaiming_normal_(m.weight, mode='fan_out')
            if m.bias is not None:
                init.constant_(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            init.constant_(m.weight, 1)
            init.constant_(m.bias, 0)
        elif isinstance(m, nn.Linear):
            init.normal_(m.weight, std=0.001)
            if m.bias is not None:
                init.constant_(m.bias, 0)

def forward(self, x):
    outs = []
    out = self.hs1(self.bn1(self.conv1(x)))
    for i in range(0, 4):
        out = self.bneck[self.divs[i]:self.divs[i + 1]](out)
        outs.append(out)
    return outs

if name == 'main': model = MobileNetV3('small') model.load_state_dict(torch.load('../../../checkpoints/backbones/mobilenet/mobilenetv3_small.pth', map_location='cpu'), strict=False) model.train() _x = torch.randn(2, 3, 512, 512) _outs = model(_x) for y in _outs: print(y.shape)

SEModule is wrong!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants