forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wikipedia_en.py
286 lines (250 loc) · 11.5 KB
/
wikipedia_en.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""
Download, preprocess and serve the TinyStories dataset as a DataLoader.
"""
import argparse
import glob
import json
import os
import random
from typing import List
from concurrent.futures import ProcessPoolExecutor
from functools import partial
import numpy as np
import requests
import sentencepiece as spm
import torch
import torch.distributed as dist
from tqdm import tqdm
from tokenizer import Tokenizer
DATA_CACHE_DIR = "data"
DATA_NAME_DIR = "wikipedia_en"
TOKENIZER_DIR = "wiki"
def download_file(url: str, fname: str, chunk_size=1024):
"""Helper function to download a file from a given url"""
resp = requests.get(url, stream=True)
total = int(resp.headers.get("content-length", 0))
with open(fname, "wb") as file, tqdm(
desc=fname,
total=total,
unit="iB",
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in resp.iter_content(chunk_size=chunk_size):
size = file.write(data)
bar.update(size)
def download():
"""Downloads the TinyStories dataset to DATA_CACHE_DIR"""
os.makedirs(DATA_CACHE_DIR, exist_ok=True)
# download the TinyStories dataset, unless it's already downloaded
data_url = "https://huggingface.co/datasets/roneneldan/TinyStories/resolve/main/TinyStories_all_data.tar.gz"
data_filename = os.path.join(DATA_CACHE_DIR, "TinyStories_all_data.tar.gz")
if not os.path.exists(data_filename):
print(f"Downloading {data_url} to {data_filename}...")
download_file(data_url, data_filename)
else:
print(f"{data_filename} already exists, skipping download...")
# unpack the tar.gz file into all the data shards (json files)
data_dir = os.path.join(DATA_CACHE_DIR, DATA_NAME_DIR)
if not os.path.exists(data_dir):
os.makedirs(data_dir, exist_ok=True)
print(f"Unpacking {data_filename}...")
os.system(f"tar -xzf {data_filename} -C {data_dir}")
else:
print(f"{data_dir} already exists, skipping unpacking...")
# print a single example just for debugging and such
shard_filenames = sorted(glob.glob(os.path.join(data_dir, "*.json")))
with open(shard_filenames[0], "r") as f:
data = json.load(f)
print("Download done.")
print(f"Number of shards: {len(shard_filenames)}")
print(f"Example story:\n{data[0]}")
def train_vocab(vocab_size):
"""
Trains a custom sentencepiece tokenizer on the TinyStories dataset.
The custom tokenizer files will be saved in DATA_CACHE_DIR/tok{N} directories,
where N is the vocab size. This is also where the pretok .bin files will go.
"""
assert vocab_size > 0, "Vocab size must be positive"
# output file prefix path for sentencepiece
data_dir = os.path.join(DATA_CACHE_DIR, DATA_NAME_DIR)
prefix = os.path.join(data_dir, f"tok{vocab_size}")
# how many shards we'll use for vocab training, kept low for efficiency
num_shards = 10
# 1) export a large chunk of text as a single text file tiny.txt
tiny_file = os.path.join(DATA_CACHE_DIR, "tiny.txt")
data_dir = os.path.join(DATA_CACHE_DIR, DATA_NAME_DIR)
shard_filenames = sorted(glob.glob(os.path.join(data_dir, "*.json")))
print(f"Writing temporary file {tiny_file} with {num_shards} shards...")
with open(tiny_file, "w", encoding="utf-8") as of:
for shard in tqdm(shard_filenames[:num_shards]):
with open(shard, "r") as f:
data = json.load(f)
for example in data:
text = example["text"]
text = text.strip()
of.write(text + "\n")
print(f"Size is: {os.path.getsize(tiny_file) / 1024 / 1024:.2f} MB")
# 2) train the sentencepiece model
print("Will now train the vocab...")
spm.SentencePieceTrainer.train(input=tiny_file,
model_prefix=prefix,
model_type="bpe",
vocab_size=vocab_size,
self_test_sample_size=0,
input_format="text",
character_coverage=1.0,
num_threads=os.cpu_count(),
split_digits=True,
allow_whitespace_only_pieces=True,
byte_fallback=True,
unk_surface=r" \342\201\207 ",
normalization_rule_name="identity")
# 3) optional cleanup, ask the user if they'd like to delete tiny.txt
dec = input(f"Delete the temporary file {tiny_file}? [y/N] ")
if dec.lower() == "y":
os.remove(tiny_file)
print(f"Deleted {tiny_file}")
print(f"Trained tokenizer is in {prefix}.model")
print("Done.")
def process_shard(args, vocab_size):
shard_id, shard = args
tokenizer_model = get_tokenizer_model_path(vocab_size)
enc = Tokenizer(tokenizer_model)
with open(shard, "r") as f:
data = json.load(f)
all_tokens = []
for example in tqdm(data, position=shard_id):
query = example["title"]
answer = example["text"]
text = f"[INST] {query} [/INST] {answer}";
text = text.strip() # get rid of leading/trailing whitespace
tokens = enc.encode(text, bos=False, eos=True) # encode the text, use BOS
all_tokens.extend(tokens)
# convert to uint16 nparray
all_tokens = np.array(all_tokens, dtype=np.uint16)
# calculate the output filename
if vocab_size == 0:
# if we're using Llama 2, just save the tokenized file in the same dir
tokenized_filename = shard.replace(".json", ".bin")
else:
# save .bin files into a new tok{N} directory
bin_dir = os.path.join(DATA_CACHE_DIR, DATA_NAME_DIR, f"tok{vocab_size}")
shard_basename = os.path.basename(shard)
bin_basename = shard_basename.replace(".json", ".bin")
tokenized_filename = os.path.join(bin_dir, bin_basename)
# write the bytes
with open(tokenized_filename, "wb") as f:
f.write(all_tokens.tobytes())
# calculate the average sequence length (they are separated by EOS=2)
avg_seq_len = all_tokens.size / ((all_tokens == 2).sum())
print(f"Saved {tokenized_filename}, average seqlen: {avg_seq_len:.2f}")
def pretokenize(vocab_size):
# iterate the shards and tokenize all of them one by one
data_dir = os.path.join(DATA_CACHE_DIR, DATA_NAME_DIR)
shard_filenames = sorted(glob.glob(os.path.join(data_dir, "*.json")))
if vocab_size > 0:
# .bin files will be saved into tok{N} directory, create it once here
bin_dir = os.path.join(DATA_CACHE_DIR, DATA_NAME_DIR, f"tok{vocab_size}")
os.makedirs(bin_dir, exist_ok=True)
# process all the shards in a process pool
fun = partial(process_shard, vocab_size=vocab_size)
with ProcessPoolExecutor() as executor:
executor.map(fun, enumerate(shard_filenames))
print("Done.")
class PretokDataset(torch.utils.data.IterableDataset):
"""Loads pretokenized examples from disk and yields them as PyTorch tensors."""
def __init__(self, split, max_seq_len, vocab_size, vocab_source):
super().__init__()
self.split = split
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.vocab_source = vocab_source
def __iter__(self):
# get worker info within a DataLoader
worker_info = torch.utils.data.get_worker_info()
worker_id = worker_info.id if worker_info else 0
# get DDP rank info
rank = dist.get_rank() if dist.is_initialized() else 0
# combine the worker_id and worker_rank to create a unique seed for rng
seed = 42 + worker_id + 1337 * rank
rng = random.Random(seed)
print(f"Created a PretokDataset with rng seed {seed}")
if self.vocab_source == "llama2":
# the .bin files are right along the .json files
bin_dir = os.path.join(DATA_CACHE_DIR, DATA_NAME_DIR)
shard_filenames = sorted(glob.glob(os.path.join(bin_dir, "*.bin")))
elif self.vocab_source == "custom":
# the .bin files are in tok{N} directory
bin_dir = os.path.join(DATA_CACHE_DIR, DATA_NAME_DIR, f"tok{self.vocab_size}")
shard_filenames = sorted(glob.glob(os.path.join(bin_dir, "*.bin")))
# train/test split. let's use only shard 0 for test split, rest train
shard_filenames = shard_filenames[1:] if self.split == "train" else shard_filenames[:1]
assert len(shard_filenames)>0, f"No bin files found in {bin_dir}"
while True:
rng.shuffle(shard_filenames)
for shard in shard_filenames:
# open the dataset for reading but keep it on disk with memmap
m = np.memmap(shard, dtype=np.uint16, mode="r")
num_batches = len(m) // self.max_seq_len
num_batches -= 1 # drop the last partial batch
assert num_batches > 0, "this shard is way too small? investigate."
ixs = list(range(num_batches))
rng.shuffle(ixs)
for ix in ixs:
start = ix * self.max_seq_len
end = start + self.max_seq_len + 1
# calling .astype will copy the data into a new numpy array, now in RAM
chunk = torch.from_numpy((m[start:end]).astype(np.int64))
x = chunk[:-1]
y = chunk[1:]
yield x, y
# -----------------------------------------------------------------------------
# public interface functions
def get_tokenizer_model_path(vocab_size):
"""
Returns path to the sentencepiece tokenizer model for a given vocab size
vocab_size = 0 designates the default Llama 2 tokenizer, in that case
None is returned.
"""
if vocab_size == 0:
return None
else:
return os.path.join(DATA_CACHE_DIR, TOKENIZER_DIR, f"tok{vocab_size}.model")
class Task:
@staticmethod
def iter_batches(batch_size, device, num_workers=0, **dataset_kwargs):
ds = PretokDataset(**dataset_kwargs)
dl = torch.utils.data.DataLoader(
ds, batch_size=batch_size, pin_memory=True, num_workers=num_workers
)
for x, y in dl:
x = x.to(device, non_blocking=True)
y = y.to(device, non_blocking=True)
yield x, y
# -----------------------------------------------------------------------------
# CLI for constructing the dataset
if __name__ == "__main__":
"""
These stages are designed to be run in order.
To tokenize data with the Llama 2 tokenizer:
python tinystories.py download
python tinystories.py pretokenize
To tokenize data with a custom tokenizer we train ourselves with sentencepiece, e.g.:
python tinystories.py download
python tinystories.py train_vocab --vocab_size=2048
python tinystories.py pretokenize --vocab_size=2048
"""
parser = argparse.ArgumentParser()
parser.add_argument("stage", type=str, choices=["download", "pretokenize", "train_vocab"])
parser.add_argument("--vocab_size", type=int, default=0, help="pretokenization vocab size. 0 = use Llama 2 tokenizer.")
args = parser.parse_args()
# depending on the stage call the appropriate function
if args.stage == "download":
download()
elif args.stage == "train_vocab":
train_vocab(vocab_size=args.vocab_size)
elif args.stage == "pretokenize":
pretokenize(vocab_size=args.vocab_size)
else:
raise ValueError(f"Unknown stage {args.stage}")