forked from prof-joe/SLMR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter_7.Rmd
226 lines (209 loc) · 8.13 KB
/
Chapter_7.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
### Statistical Learning with Math and R, Springer ###
# Chapter 7 NonLinear Regression
## 7.1 Polynomial Regression
```{r}
n=100; x=rnorm(n); y=sin(x)+rnorm(n) ## data generation
m=3;p.set=c(3,5,7); col.set=c("red","blue","green")
g=function(beta,u){S=beta[1]; for(j in 1:p)S=S+beta[j+1]*u^j; return(S)}
for(i in 1:m){
p=p.set[i]; X=rep(1,n);for(j in 1:p)X=cbind(X,x^j)
beta=drop(solve(t(X)%*%X)%*%t(X)%*%y); f=function(u)g(beta,u)
curve(f(x),-3,3, col=col.set[i],yaxt="n"); par(new=TRUE)
}
legend("topleft",lty=1,paste0("p=",p.set),col=col.set); points(x,y)
## Data Generation Closed to Even Function
n=100; x=rnorm(n)*pi; y=ceiling(x)%%2*2-1+rnorm(n)*0.2
plot(x,y,xaxt="n",yaxt="n",ann=FALSE, main="Follow Random Numbers via sin and cos")
## The function f below chooses 1, cos x, cos 2x, cos 3x as the basis
X=cbind(1,cos(x),cos(2*x),cos(3*x)); beta=solve(t(X)%*%X)%*%t(X)%*%y
f=function(x)beta[1]+beta[2]*cos(x)+beta[3]*cos(2*x)+beta[4]*cos(3*x)
par(new=TRUE);
curve(f(x),-5,5, col="red",yaxt="n",ann=FALSE)
## The function g below chooses 1, sin x, sin 2x, sin 3x as the basis
X=cbind(1,sin(x),sin(2*x),sin(3*x)); beta=solve(t(X)%*%X)%*%t(X)%*%y
g=function(x)beta[1]+beta[2]*sin(x)+beta[3]*sin(2*x)+beta[4]*sin(3*x)
par(new=TRUE);
curve(g(x),-5,5,col="blue",yaxt="n",ann=FALSE)
```
## 7.2 Spline Regression
```{r}
n=100; x=rnorm(n)*2*pi; y=sin(x)+0.2*rnorm(n) ## Data Generation via Random Numbers
col.set=c("red","green","blue"); K.set=c(5,7,9) ## Knots
for(k in 1:3){
K=K.set[k]; knots=seq(-2*pi,2*pi,length=K)
X=matrix(nrow=n,ncol=K+4)
for(i in 1:n){
X[i,1]= 1; X[i,2]= x[i]; X[i,3]= x[i]^2; X[i,4]= x[i]^3
for(j in 1:K)X[i,j+4]=max((x[i]-knots[j])^3,0)
}
beta=solve(t(X)%*%X)%*%t(X)%*%y ## beta estimation
f=function(x){S=beta[1]+beta[2]*x+beta[3]*x^2+beta[4]*x^3;
for(j in 1:K)S=S+beta[j+4]*max((x-knots[j])^3,0)
return(S)
} ## obtaining Function f
u.seq=seq(-5,5,0.02); v.seq=NULL; for(u in u.seq)v.seq=c(v.seq,f(u))
plot(u.seq,v.seq,type="l",col=col.set[k], yaxt="n", xlab="x", ylab="f(x)")
par(new=TRUE)
}
legend(-2.2,1,paste0("K=",K.set), lty=1, col=col.set);
points(x,y)
```
## 7.3 Regression to Natural Spline Curves
```{r}
d=function(j,x,knots){
K=length(knots);
(max((x-knots[j])^3,0)-max((x-knots[K])^3,0))/(knots[K]-knots[j])
}
h=function(j,x,knots){
K=length(knots);
if(j==1) return(1)
else if(j==2)return(x)
else return(d(j-2,x,knots)-d(K-1,x,knots))
}
n=100; x=rnorm(n)*2*pi; y=sin(x)+0.2*rnorm(n); ## Data Generation
K=11; knots=seq(-5,5,length=K); X=matrix(nrow=n,ncol=K+4)
for(i in 1:n){
X[i,1]= 1; X[i,2]= x[i]; X[i,3]= x[i]^2; X[i,4]= x[i]^3
for(j in 1:K)X[i,j+4]=max((x[i]-knots[j])^3,0)
}
beta=solve(t(X)%*%X)%*%t(X)%*%y
f=function(x){ ## Spline Function
S=beta[1]+beta[2]*x+beta[3]*x^2+beta[4]*x^3;
for(j in 1:K)S=S+beta[j+4]*max((x-knots[j])^3,0)
return(S)
}
X=matrix(nrow=n,ncol=K); X[,1]=1; for(j in 2:K)for(i in 1:n)X[i,j]=h(j,x[i],knots)
gamma=solve(t(X)%*%X)%*%t(X)%*%y
g=function(x){ ## Natural Spline Function
S=gamma[1]; for(j in 2:K)S=S+gamma[j]*h(j,x,knots); return(S)
}
u.seq=seq(-6,6,0.02); ## Draw the Functions as a Graph
v.seq=NULL; for(u in u.seq)v.seq=c(v.seq,f(u))
plot(u.seq,v.seq,type="l",col="blue", yaxt="n", xlab="x",ylab="f(x),g(x)"); par(new=TRUE);
w.seq=NULL; for(u in u.seq)w.seq=c(w.seq,g(u))
plot(u.seq,w.seq,type="l",col="red", yaxt="n", xlab="",ylab=""); par(new=TRUE)
legend(-3.7,1.1,c("スプライン","自然なスプライン"), lty=1, col=c("blue","red"))
points(x,y); abline(v=knots,lty=3); abline(v=c(-5,5),lwd=2); title("K=11")
```
## 7.4 Smoothing Spline
```{r}
G=function(x){ ## The values of x is assumed to be in the ascending ordere
n=length(x); g=matrix(0, nrow=n,ncol=n)
for(i in 3:n)for(j in i:n){
g[i,j]=12*(x[n]-x[n-1])*(x[n-1]-x[j-2])*(x[n-1]-x[i-2])/(x[n]-x[i-2])/(x[n]-x[j-2])+
(12*x[n-1]+6*x[j-2]-18*x[i-2])*(x[n-1]-x[j-2])^2/(x[n]-x[i-2])/(x[n]-x[j-2])
g[j,i]=g[i,j]
}
return(g)
}
n=100; x=runif(n,-5,5); y=x+sin(x)*2+rnorm(n) ## Data Generation
index=order(x); x=x[index];y=y[index]
X=matrix(nrow=n,ncol=n); X[,1]=1
for(j in 2:n)for(i in 1:n)X[i,j]=h(j,x[i],x) ## Generation of Matrix X
GG=G(x); ## Generation of Matrix G
lambda.set=c(1,30,80); col.set=c("red","blue","green")
for(i in 1:3){
lambda=lambda.set[i]
gamma=solve(t(X)%*%X+lambda*GG)%*%t(X)%*%y
g=function(u){S=gamma[1]; for(j in 2:n)S=S+gamma[j]*h(j,u,x); return(S)}
u.seq=seq(-8,8,0.02); v.seq=NULL; for(u in u.seq)v.seq=c(v.seq,g(u))
plot(u.seq,v.seq,type="l",yaxt="n", xlab="x",ylab="g(x)",ylim=c(-8,8), col=col.set[i])
par(new=TRUE)
}
points(x,y); legend("topleft", paste0("lambda=",lambda.set), col=col.set, lty=1)
title("Smoothing Spline (n=100)")
cv.ss.fast=function(X,y,lambda, G, k){
n=length(y); m=n/k;
H=X%*%solve(t(X)%*%X+lambda*G)%*%t(X); df=sum(diag(H))
I=diag(rep(1,n)); e=(I-H)%*%y; I=diag(rep(1,m))
S=0
for(j in 1:k){
test=((j-1)*m+1):(j*m);
S=S+norm(solve(I-H[test,test])%*%e[test],"2")^2
}
return(list(score=S/n,df=df))
}
## Data Generation
n=100; x=runif(n,-5,5); y=x-0.02*sin(x)-0.1*rnorm(n)
index=order(x); x=x[index];y=y[index]
X=matrix(nrow=n,ncol=n); X[,1]=1; for(j in 2:n)for(i in 1:n)X[i,j]=h(j,x[i], x)
GG=G(x)
## Plot the Efficient Degree and Prediction Error for each lambda
u=seq(1,50); v=NULL; w=NULL
for(lambda in u){
result=cv.ss.fast(X,y,lambda,GG,n); v=c(v,result$df); w=c(w,result$score)
}
plot(v,w,type="l",col="red",xlab="Efficient Degree",ylab="Prediction Error via CV")
title("The efficient degree and Predition Error via CV")
```
## 7.5 Local Regression
```{r}
n=250; x=2*rnorm(n); y=sin(2*pi*x)+rnorm(n)/4 ## Data Generation
D=function(t) max(0.75*(1-t^2),0) ## Function Definition D
K=function(x,y,lambda) D(abs(x-y)/lambda) ## Function Definition K
f=function(z,lambda){ ## Function Definition f
S=0; T=0;
for(i in 1:n){S=S+K(x[i],z,lambda)*y[i]; T=T+K(x[i],z,lambda)}
return(S/T)
}
plot(seq(-3,3,length=10),seq(-2,3,length=10),type="n",xlab="x", ylab="y"); points(x,y)
xx=seq(-3,3,0.1)
yy=NULL;for(zz in xx)yy=c(yy,f(zz,0.05)); lines(xx,yy,col="green")
yy=NULL;for(zz in xx)yy=c(yy,f(zz,0.25)); lines(xx,yy,col="blue")
## The curves for lambda=0.05, 0.25 have been drawn
m=n/10
lambda.seq=seq(0.05,1,0.01); SS.min=Inf
for(lambda in lambda.seq){
SS=0
for(k in 1:10){
test=((k-1)*m+1):(k*m); train=setdiff(1:n,test)
for(j in test){u=0; v=0;
for(i in train){
kk=K(x[i],x[j],lambda); u=u+kk*y[i]; v=v+kk
}
if(v==0){
d.min=Inf;
for(i in train){d=abs(x[j]-x[i]); if(d<d.min){d.min=d; index=i}};
z=y[index]
}
else z=u/v
SS=SS+(y[j]-z)^2
}
}
if(SS<SS.min){SS.min=SS;lambda.best=lambda}
}
## The optimum lambda has been computed
yy=NULL;for(zz in xx)yy=c(yy,f(zz,lambda.best)); lines(xx,yy,col="red")
title("Nadaraya-Watson Estimator")
legend("topleft",legend=paste0("lambda=",c(0.05, 0.25, "lambda.best")),
lwd=1,col=c("green","blue","red"))
local=function(x,y,z=x){
X=cbind(rep(1,n),x); yy=NULL; beta.hat=array(dim=2)
for(u in z){
w=array(dim=n); for(i in 1:n)w[i]=K(x[i],u,lambda=1); W=diag(w)
beta.hat= solve(t(X)%*%W%*%X)%*%t(X)%*%W%*%y; yy=c(yy,beta.hat[1]+beta.hat[2]*u)
}
return(yy)
}
n=30; x=runif(n)*2*pi-pi;
y=sin(x)+rnorm(n);
plot(x,y) ## Data Generaion
m=200; U=seq(-pi,pi,pi/m); V=local(x,y,U)
lines(U,V,col="red",type="l");
title("Local Linear Regression (p=1, N=30)")
```
## 7.6 Generalized Additive Model
```{r}
poly=function(x,y,z=x){
n=length(x);m=length(z); X=cbind(rep(1,n),x,x^2,x^3); yy=array(dim=n);
beta.hat=array(dim=4); beta.hat= solve(t(X)%*%X)%*%t(X)%*%y;
X=cbind(rep(1,m),z,z^2,z^3); yy= X%*% beta.hat
return(yy)
}
## The same function local is used as in the previous section.
n=30; x=runif(n)*2*pi-pi; y=sin(x)+rnorm(n); plot(x,y) ## Data Generation
y.1=0; y.2=0; for(k in 1:10){y.1=poly(x,y-y.2); y.2= local(x,y-y.1)}
z=seq(-2,2,0.1); par(mfrow=c(1,2))
plot(z,poly(x,y.1,z),type="l", xlab="x", ylab="f(x)", main="Polynomial Regression (Order 3)", col="green")
plot(z,local(x,y.2,z),type="l", xlab="x", ylab="f(x)", main="Local Linear Regression",col="green")
```