forked from snesmaeili/PyMoBI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
144 lines (118 loc) · 5.51 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# pymobi/core/config.py
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any
from pathlib import Path
@dataclass
class PyMoBIConfig:
"""Configuration management for PyMoBI preprocessing."""
# Required parameters
study_folder: Path
# File structure settings
filename_prefix: str = "sub-"
# Folder structure with default values
source_data_folder: Path = field(default_factory=lambda: Path("0_source-data"))
bids_data_folder: Path = field(default_factory=lambda: Path("1_BIDS-data"))
raw_eeglab_data_folder: Path = field(default_factory=lambda: Path("2_raw-EEGLAB"))
eeg_preprocessing_folder: Path = field(default_factory=lambda: Path("3_EEG-preprocessing"))
spatial_filters_folder: Path = field(default_factory=lambda: Path("4_spatial-filters"))
spatial_filters_amica_folder: Path = field(default_factory=lambda: Path("4-1_AMICA"))
single_subject_analysis_folder: Path = field(default_factory=lambda: Path("5_single-subject-EEG-analysis"))
motion_analysis_folder: Path = field(default_factory=lambda: Path("6_single-subject-motion-analysis"))
# File naming conventions
merged_filename: str = "merged_EEG.fif"
basic_prepared_filename: str = "basic_prepared.fif"
preprocessed_filename: str = "preprocessed.fif"
filtered_filename: str = "filtered.fif"
amica_filename_output: str = "AMICA.fif"
dipfitted_filename: str = "dipfitted.fif"
preprocessed_and_ica_filename: str = "preprocessed_and_ICA.fif"
single_subject_cleaned_ica_filename: str = "cleaned_with_ICA.fif"
merged_motion_filename: str = "merged_MOTION.fif"
processed_motion_filename: str = "motion_processed.fif"
# Preprocessing parameters
channels_to_remove: List[str] = field(default_factory=list)
eog_channels: List[str] = field(default_factory=list)
ref_channel: Optional[str] = "FCz"
rename_channels: Dict[str, str] = field(default_factory=dict)
resample_freq: float = 250.0
# Channel detection parameters
chancorr_crit: float = 0.8
chan_max_broken_time: float = 0.3
chan_detect_num_iter: int = 20
chan_detected_fraction_threshold: float = 0.5
flatline_crit: str = "off"
line_noise_crit: str = "off"
num_chan_rej_max_target: float = 0.2 # 1/5 of channels
# Channel locations
channel_locations_filename: Optional[str] = None
# Zapline settings
zapline_config: Dict[str, Any] = field(default_factory=lambda: {
"noisefreqs": [], # Auto-detect
"bandwidth": 2.0
})
# AMICA parameters
filter_lowCutoffFreqAMICA: float = 1.75
filter_AMICA_highPassOrder: int = 1650
filter_highCutoffFreqAMICA: Optional[float] = None
filter_AMICA_lowPassOrder: Optional[int] = None
num_models: int = 1
max_threads: int = 8
# AMICA auto-rejection settings
amica_autoreject: bool = True
amica_n_rej: int = 10
amica_reject_sigma_threshold: float = 3.0
amica_max_iter: int = 2000
# ICLabel settings
iclabel_classifier: str = "lite"
iclabel_classes: List[int] = field(default_factory=lambda: [1])
iclabel_threshold: float = -1
# Final filtering
final_filter_lower_edge: float = 0.2
final_filter_higher_edge: Optional[float] = None
# Motion processing
lowpass_motion: float = 8.0
lowpass_motion_after_derivative: float = 24.0
# Processing control
force_recompute: bool = False
save_intermediate: bool = True
def __post_init__(self):
"""Convert string paths to Path objects."""
self.study_folder = Path(self.study_folder)
for field_name, field_value in self.__dict__.items():
if isinstance(field_value, str) and field_name.endswith('_folder'):
setattr(self, field_name, Path(field_value))
@classmethod
def from_dict(cls, config_dict: Dict[str, Any]) -> "PyMoBIConfig":
"""Create configuration from dictionary."""
return cls(**config_dict)
def to_dict(self) -> Dict[str, Any]:
"""Convert configuration to dictionary."""
return {k: str(v) if isinstance(v, Path) else v
for k, v in self.__dict__.items()}
def validate(self) -> bool:
"""Validate configuration settings."""
if not self.study_folder.exists():
raise ValueError(f"Study folder does not exist: {self.study_folder}")
if self.resample_freq <= 0:
raise ValueError(f"Invalid resample frequency: {self.resample_freq}")
if self.chan_detected_fraction_threshold < 0 or self.chan_detected_fraction_threshold > 1:
raise ValueError(f"Invalid channel detection threshold: {self.chan_detected_fraction_threshold}")
return True
def create_folders(self):
"""Create folder structure if it doesn't exist."""
folders = [
self.source_data_folder,
self.bids_data_folder,
self.raw_eeglab_data_folder,
self.eeg_preprocessing_folder,
self.spatial_filters_folder,
self.spatial_filters_amica_folder,
self.single_subject_analysis_folder,
self.motion_analysis_folder
]
for folder in folders:
full_path = self.study_folder / folder
full_path.mkdir(parents=True, exist_ok=True)
def get_subject_path(self, subject_id: int, folder: Path) -> Path:
"""Get subject-specific path."""
return self.study_folder / folder / f"{self.filename_prefix}{subject_id}"