forked from pfnet-research/graph-nvp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_model_chainermn.py
179 lines (159 loc) · 7.43 KB
/
train_model_chainermn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import argparse
import json
import os
from distutils.util import strtobool
import numpy as np
import chainer
import chainermn
import chainer.functions as F
from chainer import training
from chainer.datasets import TransformDataset
from chainer.training import extensions
from chainer_chemistry.datasets import NumpyTupleDataset
from chainer.dataset import iterator as iterator_module, convert
import argparser
from data import transform_zinc250k
from data.transform_zinc250k import transform_fn_zinc250k, zinc250_atomic_num_list
from generate import generate_mols
from graph_nvp.hyperparams import Hyperparameters
from graph_nvp.models.model import GraphNvpModel
from graph_nvp.utils import save_mol_png, check_validity
class MolNvpUpdater(training.StandardUpdater):
def __init__(self, iterator, opt, device, loss_func,
converter=convert.concat_examples):
super(MolNvpUpdater, self).__init__(
iterator=iterator,
optimizer=opt,
converter=converter,
loss_func=loss_func,
device=device,
loss_scale=None,
)
if isinstance(iterator, iterator_module.Iterator):
iterator = {'main': iterator}
self.iterator = iterator
self.opt = opt
self.device = device
self.loss_func = loss_func
self.model = opt.target
self.converter = converter
def update_core(self):
two_step = True
batch = self._iterators['main'].next()
in_arrays = self.converter(batch, self.device)
x = in_arrays[0]
z, sum_log_det_jacs = self.model(in_arrays[1], x)
optimizer = self._optimizers['main']
nll = self.model.log_prob(z, sum_log_det_jacs)
if two_step:
alpha = 1.
loss = (nll[0] + alpha * nll[1]) / (1. + alpha)
chainer.reporter.report({'log_likelihood': loss, 'nll_x': nll[0],
'nll_adj': nll[1]})
else:
loss = nll
chainer.reporter.report({'log_likelihood': loss})
self.model.cleargrads()
loss.backward()
optimizer.update()
def train():
parser = argparser.get_parser()
args = parser.parse_args()
device = -1
comm_type = args.communicator
if args.gpu == -1:
comm_type = 'naive'
comm = chainermn.create_communicator(comm_type)
if args.gpu >= 0:
device = comm.intra_rank
if args.data_name == 'qm9':
from data import transform_qm9
transform_fn = transform_qm9.transform_fn
atomic_num_list = [6, 7, 8, 9, 0]
mlp_channels = [256, 256]
gnn_channels = {'gcn': [8, 64], 'hidden': [128, 64]}
valid_idx = transform_qm9.get_val_ids()
elif args.data_name == 'zinc250k':
transform_fn = transform_fn_zinc250k
atomic_num_list = zinc250_atomic_num_list
mlp_channels = [1024, 512]
gnn_channels = {'gcn': [16, 128], 'hidden': [256, 64]}
valid_idx = transform_zinc250k.get_val_ids()
if comm.rank == 0:
print('input args:\n', json.dumps(vars(args), indent=4, separators=(',', ':'))) # pretty print args
dataset = NumpyTupleDataset.load(os.path.join(args.data_dir, args.data_file))
dataset = TransformDataset(dataset, transform_fn)
if len(valid_idx) > 0:
train_idx = [t for t in range(len(dataset)) if t not in valid_idx]
n_train = len(train_idx)
train_idx.extend(valid_idx)
train, test = chainer.datasets.split_dataset(dataset, n_train, train_idx)
else:
train, test = chainer.datasets.split_dataset_random(dataset, int(len(dataset)*0.8), seed=args.seed)
else:
train, test = None, None
train = chainermn.scatter_dataset(train, comm, shuffle=True)
train_iter = chainer.iterators.SerialIterator(train, args.batch_size)
num_masks = {'node':args.num_node_masks, 'channel':args.num_channel_masks}
num_coupling = {'node':args.num_node_coupling, 'channel':args.num_channel_coupling}
model_params = Hyperparameters(args.num_atoms, args.num_rels, len(atomic_num_list),
num_masks=num_masks, num_coupling=num_coupling,
batch_norm=args.apply_batch_norm,
additive_transformations=args.additive_transformations,
learn_dist=args.learn_dist,
prior_adj_var=args.prior_var_adj,
prior_x_var=args.prior_var_x,
mlp_channels=mlp_channels,
gnn_channels=gnn_channels)
model = GraphNvpModel(model_params)
if device >= 0:
chainer.cuda.get_device(device).use()
model.to_gpu(device)
# opt = optimizers.Adam()
if comm.rank == 0:
print('==========================================')
print('Num process (COMM_WORLD): {}'.format(comm.size))
if device >= 0:
print('Using GPUs')
print('Using {} communicator'.format(args.communicator))
print('Num Minibatch-size: {}'.format(args.batch_size))
print('Num epoch: {}'.format(args.max_epochs))
print('==========================================')
os.makedirs(args.save_dir, exist_ok=True)
model.save_hyperparams(os.path.join(args.save_dir, 'graphnvp-params.json'))
opt = chainermn.create_multi_node_optimizer(chainer.optimizers.Adam(), comm)
opt.setup(model)
updater = MolNvpUpdater(train_iter, opt, device=device, loss_func=None)
trainer = training.Trainer(updater, (args.max_epochs, 'epoch'), out=args.save_dir)
def print_validity(t):
adj, x = generate_mols(model, batch_size=100, gpu=device, temp=0.7)
valid_mols = check_validity(adj, x, atomic_num_list, device)['valid_mols']
mol_dir = os.path.join(args.save_dir, 'generated_{}'.format(t.updater.epoch))
# mol_dir = os.path.join(args.save_dir, 'generated_{}'.format(t.updater.iteration))
os.makedirs(mol_dir, exist_ok=True)
for ind, mol in enumerate(valid_mols):
save_mol_png(mol, os.path.join(mol_dir, '{}.png'.format(ind)))
# trainer.extend(extensions.dump_graph('log_likelihood'))
# trainer.extend(extensions.Evaluator(test_iter, model, eval_func=model.eval, device=device))
save_epochs = args.save_epochs
if save_epochs == -1:
save_epochs = args.max_epochs
if comm.rank == 0:
if args.debug:
trainer.extend(print_validity, trigger=(1, 'epoch'))
# trainer.extend(print_validity, trigger=(100, 'iteration'))
trainer.extend(extensions.snapshot(), trigger=(save_epochs, 'epoch'))
# trainer.extend(extensions.PlotReport(['log_likelihood'], 'epoch', file_name='qm9.png'),
# trigger=(100, 'iteration'))
trainer.extend(extensions.PrintReport(['epoch', 'log_likelihood', 'nll_x', 'nll_adj', 'elapsed_time']),
trigger=(100, 'iteration'))
trainer.extend(extensions.LogReport(['epoch', 'log_likelihood', 'nll_x', 'nll_adj',
'elapsed_time'], trigger=(1, 'epoch')))
trainer.extend(extensions.ProgressBar())
if args.load_params == 1:
chainer.serializers.load_npz(args.load_snapshot, trainer)
trainer.run()
if comm.rank == 0:
chainer.serializers.save_npz(os.path.join(args.save_dir, 'graph-nvp-final.npz'), model)
if __name__ == '__main__':
train()