-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
144 lines (128 loc) · 5.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from argparse import ArgumentParser, Namespace
from os import path as osp
from ofnil import *
home = osp.dirname(osp.abspath(__file__))
def register_source_graph(client: Client, graph_name: str):
# vertices
reviewer = vertex_entity(f"{graph_name}_reviewer", "Reviewer", "reviewerID")
product = vertex_entity(f"{graph_name}_product", "Product", "asin")
# edges
also_view = edge_entity(f"{graph_name}_also_view", "alsoView", product, product, directed=False)
also_buy = edge_entity(f"{graph_name}_also_buy", "alsoBuy", product, product, directed=False)
is_similar_to = edge_entity(f"{graph_name}_is_similar_to", "isSimilarTo", product, product, directed=False)
same_rates = edge_entity(f"{graph_name}_same_rates", "sameRates", reviewer, reviewer, directed=False)
rates = edge_entity(f"{graph_name}_rates", "rates", reviewer, product, directed=True)
# properties
product_fields = fields(
[("asin", "String"), ("price", "Float"), ("rank1", "Int"), ("rank2", "Int")],
product,
)
reviewer_fields = fields(
[("reviewerId", "String")],
reviewer,
)
# graph
g = client.register_source_graph(
graph_name,
entities=[
reviewer,
product,
also_view,
also_buy,
is_similar_to,
same_rates,
rates,
],
fields=product_fields + reviewer_fields,
infra={"Neo4j": "neo4j_1"},
)
return g
class DemoPipeline(procedures.Procedure):
"""A demo feature transformation pipeline
This is an example pipeline that can be part of users' feature engineering library. This pipeline
defines certain feature logic (e.g. PageRank, triangle counting on an induced homogeneous graph)
with configurable parameters (e.g. damping factor in PageRank). In an ideal case, a user responsible
for data engineering creates such pipeline, and several users as data scientists can reuse the
pipeline definition with different parameters for different tasks.
"""
def __init__(self, context, project) -> None:
super().__init__(context)
self.add_procedure(
"user_page_rank",
procedures.BuiltIn(
procedure="page_rank",
name="user_page_rank",
args={
"entities": [
f"default/Entity/{project}_reviewer",
f"default/Entity/{project}_same_rates/{project}_reviewer/{project}_reviewer",
],
"target_node_entity": f"default/Entity/{project}_reviewer",
},
),
)
self.add_procedure(
"average_price",
procedures.BuiltIn(
"aggregate_neighbors",
name="average_price",
args={
"edge_entity": f"default/Entity/{project}_rates/{project}_reviewer/{project}_product",
"target_node_entity": f"default/Entity/{project}_reviewer",
"properties": ["price"],
"aggregator": "mean",
},
),
)
self.add_procedure(
"user_tc",
procedures.BuiltIn(
"triangle_count",
name="user_triangle_count",
args={
"entities": [
f"default/Entity/{project}_reviewer",
f"default/Entity/{project}_same_rates/{project}_reviewer/{project}_reviewer",
],
"target_node_entity": f"default/Entity/{project}_reviewer",
},
),
)
def construct(self, graph, configs):
for builtin in self.children():
builtin.update_procedure_args(configs)
return [proc(graph) for proc in self.children()]
def get_args(argv=None):
parser = ArgumentParser("Quickstart Feature Engineering")
parser.add_argument("--project", type=str, default="pydemo", help="The graph name")
parser.add_argument("--damping_factor", type=int, default=0.85, help="The damping factor for user page rank")
parser.add_argument(
"--max_iteration", type=int, default=20, help="The number of maximum iterations of user page rank"
)
parser.add_argument(
"--tolerance", type=float, default=1e-7, help="The minimum change in scores between iterations."
)
return parser.parse_args(argv)
if __name__ == "__main__":
client = Client(home)
args = get_args()
g = register_source_graph(client, args.project)
print(f"registered source graph {g.name}")
pipeline = DemoPipeline(client.new_pipeline_context(), args.project)
dataframes = pipeline(
g,
{
"user_page_rank": {
# algorithm configs
"damping_factor": args.damping_factor,
"max_iteration": args.max_iteration,
"tolerance": args.tolerance,
# common procedure configs
"infra": {"Neo4j": "neo4j_1"},
},
"average_price": {"infra": {"Neo4j": "neo4j_1"}},
"user_triangle_count": {"infra": {"Neo4j": "neo4j_1"}},
},
)
transformation_id = pipeline.finalize(fields=[(dataframes, {"Redis": "redis"})])
print(f"registered transformation {transformation_id}")