-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
160 lines (118 loc) · 4.91 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
import networkx.drawing.nx_pylab as nx_plot
plt.rcParams.update({'font.size': 16})
plt.rc('axes', titlesize=24)
cervicals = [1, 2, 3, 4, 5, 6, 7]
thoracics = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
lumbars = [20, 21, 22, 23, 24]
class_names = [*cervicals, *thoracics, *lumbars]
BINARY_MAX_WEIGHT = 10e8
### for verse
WEIGHT_28 = 2.0
WEIGHT_25 = 1
WEIGHT_NO19 = 3.0
### for other dataset
# WEIGHT_28 = 10e8
# WEIGHT_25 = 10e8
# WEIGHT_NO19 = 10e8
def name_from_indices(i, j):
return"{:2d}_{:2d}".format(i,j)
def indices_from_name(name):
return int(name.split("_")[0]), int(name.split("_")[1])
def get_key_from_value(dict_, val):
for (key, value) in dict_.items():
if value == val:
return key
def create_nodes(graph, N, V, study, name_to_index):
graph.add_nodes_from(['src', 'dst'])
for i in range(N):
for j in range(V):
name = name_from_indices(i,j)
study.append(name)
name_to_index[name] = V * i + j
i_n, j_n = indices_from_name(name)
assert(i_n == i and j_n == j)
graph.add_nodes_from(study)
def create_edges(graph, N, V, study, prob, g_cost, name_to_index):
for name in list(graph):
if name == 'src':
for j in range(V):
node = name_from_indices(0,j)
probability_of_node = prob[0][j]
cost_of_node = g_cost[0][j]
unary_term = 1 - probability_of_node + cost_of_node
graph.add_edge('src', node, weight= unary_term)
else:
if name == 'dst':
continue
index_node = name_to_index[name]
index_node_key = get_key_from_value(name_to_index, index_node)
i_n, j_n = indices_from_name(name)
if i_n == N-1:
# break
graph.add_edge(index_node_key, 'dst', weight= BINARY_MAX_WEIGHT)
else:
for j in range(V):
next_node_index = V * (i_n + 1) + j
next_node_key = get_key_from_value(name_to_index, next_node_index)
probability_of_node = prob[i_n+1][j]
cost_of_node = g_cost[i_n+1][j]
unary_term = 1 - probability_of_node + cost_of_node #uniary term (probability)
if j_n + 1 == j:
weight = unary_term
elif j_n - 1 == j: # Skip the connection of the same label
continue
elif j == j_n == 23: # Case of L6 (by handling 2 consecutives L5)
weight = unary_term + WEIGHT_25
elif j_n == 17 and j == 19: # Case of missing T12 (establish a connection between T11 and L1)
weight = unary_term + WEIGHT_NO19
elif j_n == j == 18: # Case of T13 (by handling 2 consecutives T12)
weight = unary_term + WEIGHT_28
elif j_n == 23 and j == 18:
weight = unary_term + WEIGHT_28
elif j_n == j: # Skip the connection of the label before
continue
else:
weight = unary_term + BINARY_MAX_WEIGHT
graph.add_edge(index_node_key, next_node_key, weight= weight)
def plot_graph(graph):
plt.figure(figsize=(20, 10))
nx.draw_circular(graph, with_labels=True, font_weight='bold')
plt.show()
def get_shortestPath(graph, prob):
path = nx.dijkstra_path(graph, 'src', 'dst', weight='weight')
path = path[1:-1]
return path
def path_from_predictions(volume):
path_map = class_names * volume.shape[0]
path = []
preds = np.argmax(volume, axis=1)
for i, x in enumerate(np.nditer(preds)):
path.append(path_map[x + 24*i])
return path
def path_from_names(graph, path):
idx = [] # For storing the indices of the vertices
for i in path:
idx.append(list(graph).index(i))
bone_names = class_names * len(path)
path_names = [bone_names[i-2] for i in idx]
return path_names
def relabel(corrections):
for i in range(1, len(corrections)):
if corrections[i] == 24 and corrections[i-1] == 24:
corrections[i] = 25
elif corrections[i] == 19 and corrections[i-1] == 19:
if i == len(corrections)-1:
corrections[i] = 20
else:
corrections[i] = 28
else:
pass
return corrections
def relabel_T12_L6(labels):
for i, l in enumerate(labels):
if l > 19 and l != 28:
labels[i] -= 1
return labels