-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
316 lines (216 loc) · 8.02 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import numpy as np
import SimpleITK as sitk
def compute_dice(im1, im2, empty_score=1.0):
"""
Computes the Dice coefficient, a measure of set similarity.
Parameters
----------
im1 : array-like, bool
Any array of arbitrary size. If not boolean, will be converted.
im2 : array-like, bool
Any other array of identical size. If not boolean, will be converted.
Returns
-------
dice : float
Dice coefficient as a float on range [0,1].
Maximum similarity = 1
No similarity = 0
Both are empty (sum eq to zero) = empty_score
Notes
-----
The order of inputs for `dice` is irrelevant. The result will be
identical if `im1` and `im2` are switched.
"""
im1 = np.asarray(im1).astype(np.bool)
im2 = np.asarray(im2).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
im_sum = im1.sum() + im2.sum()
if im_sum == 0:
return empty_score
# Compute Dice coefficient
intersection = np.logical_and(im1, im2)
# print('dice: ', 2. * intersection.sum() / im_sum)
return 2. * intersection.sum() / im_sum
def compute_multi_dice(prediction, gt):
'''
Evaluate the segmentatio with multi labels.
For each class, compute a single DSC, and take the mean over all the classes.
'''
labels = sorted(np.unique(gt))
num_labels = len(labels)
assert num_labels >= 1
print('{} labels in the gt mask: {}'.format(num_labels-1, labels[1:]))
dsc = 0
if num_labels == 1:
print('No label in the ground truth.')
return dsc
else:
for l in range(1, num_labels):
gt_l = np.copy(gt)
gt_l[gt_l!=labels[l]] = 0
gt_l[gt_l > 0] = 1
pred_l = np.copy(prediction)
pred_l[pred_l!=labels[l]] = 0
pred_l[pred_l > 0] = 1
dsc += compute_dice(pred_l, gt_l)
print('DSC label {}: {}'.format(labels[l], DSC(pred_l, gt_l)))
# print(dsc)
dsc = dsc/(num_labels-1)
print('Multi label DSC: ', dsc)
return dsc
def compute_hd(im_gt_array, im_pred_array, spacing=[1,1,1]):
"""
Computes Hausdorff, a measure of set similarity.
Parameters
----------
im_gt : itk_image with boolean values.
im_pred : itk_image with boolean values.
Returns
-------
hd : float
If prediction is empty (while ground truth isn't) = np.inf
Notes
-----
Make sure the spacing of im_gt and im_pred are same and correct.
SimpleITK comsiders this spacing to compute HD.
"""
if im_pred_array.sum() == 0:
hd = 100
else:
im_gt = sitk.GetImageFromArray(im_gt_array)
im_pred = sitk.GetImageFromArray(im_pred_array)
im_gt.SetSpacing(spacing)
im_pred.SetSpacing(spacing)
hd_filter = sitk.HausdorffDistanceImageFilter()
hd_filter.Execute(im_gt, im_pred)
hd = hd_filter.GetHausdorffDistance()
return hd
def compute_multi_hd(prediction, gt, spacing=[1,1,1]):
labels = sorted(np.unique(gt))
num_labels = len(labels)
assert num_labels > 1
print('{} labels in the gt mask: {}'.format(num_labels-1, labels[1:]))
hd = 0
for l in range(1, num_labels):
gt_l = np.copy(gt)
gt_l[gt_l!=labels[l]] = 0
gt_l[gt_l > 0] = 1
gt_l = get_largest_component(gt_l)
# gt_l = gt_l.astype(np.bool)
pred_l = np.copy(prediction)
pred_l[pred_l!=labels[l]] = 0
pred_l[pred_l > 0] = 1
pred_l = get_largest_component(pred_l)
# pred_l = pred_l.astype(np.bool)
hd_l = compute_hd(gt_l, pred_l, spacing)
hd += hd_l
print('HD label {}: {}'.format(labels[l], hd_l))
# print(dsc)
hd = hd/(num_labels-1)
print('Multi label HD: ', hd)
return hd
def get_largest_component(pred):
'''find the largest connected component and return in binary'''
import numpy as np
from scipy.ndimage.measurements import label
structure = np.ones((3, 3, 3), dtype=np.int)
labeled, ncomponents = label(pred, structure)
if ncomponents > 1:
labels = np.unique(labeled)[1:]
label_to_keep = 1
largest_count = 0
for label in labels:
num_label = np.count_nonzero(labeled==label)
# print('component {}: {}'.format(label, num_label))
if num_label > largest_count:
label_to_keep = label
labeled[labeled!=label_to_keep] = 0
labeled[labeled>0] = 1
assert labeled.shape == pred.shape
return labeled
def reorganize_annos(annos):
num_labels = len(annos)
new_annos = dict()
for anno in annos:
label = anno['label']
x = anno['X']
y = anno['Y']
z = anno['Z']
new_annos[str(label)] = [x, y, z]
return new_annos
def dist(x1, y1, z1, x2, y2, z2):
import numpy as np
return np.sqrt((x2-x1)**2 + (y2-y1)**2 + (z2-z1)**2)
def verse_metrics(gt_seg_file, gt_ctd_file,
pred_seg_file, pred_ctd_file):
## return Dice, ID rate, MSE, HD
from utils import read_json_file, read_nifti_file, get_size_and_spacing_and_orientation_from_nifti_file
import pandas as pd
import numpy as np
gt_mask = read_nifti_file(gt_seg_file)
gt_annos = read_json_file(gt_ctd_file)
pred_mask = read_nifti_file(pred_seg_file)
pred_annos = read_json_file(pred_ctd_file)
pred_annos = reorganize_annos(pred_annos)
_, spacing, _, _ = get_size_and_spacing_and_orientation_from_nifti_file(gt_seg_file)
spacing = spacing.astype(np.double)
metric = dict()
num_positive_id = 0
num_negative_id = 0
mse_list = []
hd_list = []
dsc_list = []
# ----------ANNOTATION METRICS---------------------
for idx, gt_anno in enumerate(gt_annos):
gt_label = gt_anno['label']
gt_x = gt_anno['X']
gt_y = gt_anno['Y']
gt_z = gt_anno['Z']
metric[str(gt_label)] = []
if str(gt_label) in pred_annos.keys():
pred_x, pred_y, pred_z = pred_annos[str(gt_label)]
mse = dist(pred_x, pred_y, pred_z, gt_x, gt_y, gt_z)
if mse <= 20:
metric[str(gt_label)].append(1)
num_positive_id += 1
else:
metric[str(gt_label)].append(0)
num_negative_id += 1
metric[str(gt_label)].append(mse)
mse_list.append(mse)
else:
metric[str(gt_label)].append(0)
metric[str(gt_label)].append(None)
num_negative_id += 1
mse_list.append(None)
# ----------SEGMENTATION METRICS --------------------
pred_mask_label = (pred_mask == gt_label)
gt_mask_label = (gt_mask == gt_label)
dsc = compute_dice(pred_mask_label, gt_mask_label)
if gt_label not in pred_mask:
hd = None
else:
hd = compute_hd(pred_mask_label.astype(np.int), gt_mask_label.astype(np.int), spacing)
metric[str(gt_label)].append(dsc)
metric[str(gt_label)].append(hd)
dsc_list.append(dsc)
hd_list.append(hd)
mse_list = [mse for mse in mse_list if mse is not None]
hd_list = [hd for hd in hd_list if hd is not None]
dsc_list = [dsc for dsc in dsc_list if dsc is not None]
metric['mean'] = []
id_rate = num_positive_id / (num_positive_id + num_negative_id)
metric['mean'].append(id_rate)
mean_mse = np.nanmean(np.array(mse_list))
std_mse = np.nanstd(np.array(mse_list))
metric['mean'].append(mean_mse)
mean_dsc = np.nanmean(np.array(dsc_list))
std_dsc = np.nanstd(np.array(dsc_list))
metric['mean'].append(mean_dsc)
mean_hd = np.nanmean(np.array(hd_list))
std_hd = np.nanstd(np.array(hd_list))
metric['mean'].append(mean_hd)
metric_out = pd.DataFrame.from_dict(metric, orient='index',
columns=['Id rate', 'MLD', 'Dice', 'HD'])
return metric_out