-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
221 lines (164 loc) · 9.26 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import nibabel as nib
import numpy as np
from scipy.ndimage.measurements import center_of_mass
import re
from utils import get_size_and_spacing_and_orientation_from_nifti_file, resampling, reorienting
def process_binary_mask(binary_mask_file, reference_ct_file):
# load binary mask
mask = nib.load(binary_mask_file).get_fdata()
# ct resolution and direction
_, ref_spacing, ref_orientation, ref_affine = get_size_and_spacing_and_orientation_from_nifti_file(reference_ct_file)
# resampling and redirection
resampled_mask_img = resampling(nib.Nifti1Image(mask, ref_affine), ref_spacing)
resampled_mask_data = resampled_mask_img.get_fdata()
transformed_mask_data = reorienting(resampled_mask_data, ref_orientation, 'PIR') # 确保目标方向是 PIR
return transformed_mask_data
def get_index_from_filename(filename):
match = re.search(r'vertebrae_([CTL])(\d+)', filename)
if match:
region = match.group(1)
index = int(match.group(2))
if region == 'C':
return index
elif region == 'T':
return 7 + index
elif region == 'L':
return 19 + index
return None
def process_label_file(label_file, reference_ct_file):
mask = nib.load(label_file).get_fdata()
_, ref_spacing, ref_orientation, ref_affine = get_size_and_spacing_and_orientation_from_nifti_file(reference_ct_file)
resampled_label_img = resampling(nib.Nifti1Image(mask, ref_affine), ref_spacing)
resampled_label_data = resampled_label_img.get_fdata()
transformed_label_data = reorienting(resampled_label_data, ref_orientation, 'PIR')
loc = center_of_mass(transformed_label_data) # centroid
index = get_index_from_filename(label_file)
return {'mask': transformed_label_data, 'location': loc, 'index': index}
def load_labels_and_centroids(label_files, reference_ct_file):
print(f"Reference CT file: {reference_ct_file}")
labels = []
for label_file in label_files:
labels.append(process_label_file(label_file, reference_ct_file))
sorted_labels = sorted(labels, key=lambda x: x['index'])
print("Sorted existing labels (by index):")
for label in sorted_labels:
print(f"Index: {label['index']}, Location: {label['location']}, Mask shape: {label['mask'].shape}")
return sorted_labels
def load_models(seg_spine_norm=False, seg_vert_norm=False):
if seg_spine_norm:
model_file_seg_binary = 'models/segmentor_spine_norm.pth'
else:
model_file_seg_binary = 'models/segmentor_spine.pth'
if seg_vert_norm:
model_file_seg_idv = 'models/segmentor_vertebra_norm.pth'
else:
model_file_seg_idv = 'models/segmentor_vertebra.pth'
model_file_loc_sag = 'models/locator_sagittal.pth'
model_file_loc_cor = 'models/locator_coronal.pth'
id_group_model_file = 'models/classifier_group.pth'
id_cer_model_file = 'models/classifier_cervical.pth'
id_thor_model_file = 'models/classifier_thoracic.pth'
id_lum_model_file = 'models/classifier_lumbar.pth'
return {'seg_binary': model_file_seg_binary, 'seg_individual': model_file_seg_idv,
'loc_sagittal': model_file_loc_sag, 'loc_coronal': model_file_loc_cor,
'id_group': id_group_model_file, 'id_cervical': id_cer_model_file,
'id_thoracic': id_thor_model_file, 'id_lumbar': id_lum_model_file}
if __name__ == "__main__":
import argparse, os, glob, sys
from utils import mkpath, read_isotropic_pir_img_from_nifti_file
import torch
torch.set_grad_enabled(False)
parser = argparse.ArgumentParser(description='Run pipeline on a single CT scan.')
parser.add_argument('-D', '--input_data', type=str, help='a CT scan or a folder of CT scans in nifti format')
parser.add_argument('-B', '--binary_mask', type=str, help='path to the existing spine binary mask in nifti format')
parser.add_argument('-S', '--save_folder', default='-1', type=str, help='folder to save the results')
parser.add_argument('-P', '--label_path', type=str, help='path to the folder containing vertebrae label files')
parser.add_argument('-F', '--force_recompute', action='store_true', help='set True to recompute and overwrite the results')
parser.add_argument('-L', '--initial_locations', action='store_true', help='set True to use initial location predictions')
parser.add_argument('-Ns', '--seg_spine_norm', action='store_true', help='set True to use normalized spine segmentor')
parser.add_argument('-Nv', '--seg_vert_norm', action='store_true', help='set True to use normalized vertebra segmentor')
args = parser.parse_args()
### results saving locations
save_folder = args.save_folder
if save_folder != '-1':
mkpath(save_folder)
else:
current_path = os.path.abspath(os.getcwd())
save_folder = os.path.join(current_path, 'results')
mkpath(save_folder)
### load trained models
models = load_models(seg_spine_norm=args.seg_spine_norm, seg_vert_norm=args.seg_vert_norm)
### inputs
scan_list = []
if os.path.isdir(args.input_data):
scan_list = glob.glob(os.path.join(args.input_data, '*.nii.gz'))
elif os.path.isfile(args.input_data):
scan_list.append(args.input_data)
else:
print('It is a special file (socket, FIFO, device file)')
for scan_file in scan_list:
### check results existence
scanname = os.path.split(scan_file)[-1].split('.')[0]
print(' ... checking: ', scanname)
if os.path.exists(os.path.join(save_folder, '{}_seg.nii.gz'.format(scanname))) and not args.force_recompute:
sys.exit(' ... {} result exists, not overwriting '.format(scanname))
print(' ... starting to process: ', scanname)
# =================================================================
# Load the CT scan
# =================================================================
### TODO: data I/O for other formats
#try:
pir_img = read_isotropic_pir_img_from_nifti_file(scan_file)
# except ImageFileError:
# sys.exit('The input CT should be in nifti format.')
print(' ... loaded CT volume in isotropic resolution and PIR orientation ')
# =================================================================
# Spine binary segmentation
# =================================================================
if args.binary_mask:
#binary_mask = read_isotropic_pir_img_from_nifti_file(args.binary_mask)
binary_mask=process_binary_mask(args.binary_mask, scan_file)
else:
from segment_spine import binary_segmentor
binary_mask = binary_segmentor(pir_img, models['seg_binary'], mode='overlap', norm=args.seg_spine_norm)
print(' ... obtained spine binary segmentation ')
# =================================================================
# Initial locations
# =================================================================
locations = np.array([])
if args.initial_locations:
from locate import locate
locations = locate(pir_img, models['loc_sagittal'], models['loc_coronal'])
print(' ... obtained {} initial 3D locations '.format(len(locations)))
# =================================================================
# Consistency circle - Locations refine - multi label segmentation
# =================================================================
from consistency_loop import consistency_refinement_close_loop
label_files = sorted(
[os.path.join(args.label_path, f) for f in os.listdir(args.label_path)
if f.startswith("vertebrae_C") or f.startswith("vertebrae_T") or f.startswith("vertebrae_L")]
)
# filter empty file
#label_files = [f for f in label_files if np.count_nonzero(nib.load(f).get_fdata()) > 0]
valid_label_files = []
for f in label_files:
try:
if np.count_nonzero(nib.load(f).get_fdata()) > 0:
valid_label_files.append(f)
else:
print(f"Skipping empty file: {f}")
except Exception as e:
print(f"Error loading file {f}: {e}")
existing_labels = load_labels_and_centroids(valid_label_files, scan_file)
multi_label_mask, locations, labels, loc_has_converged = consistency_refinement_close_loop(
locations, pir_img, binary_mask, models['seg_individual'], args.seg_vert_norm,
models['id_group'], models['id_cervical'], models['id_thoracic'], models['id_lumbar'],
existing_labels # exist label
)
print(' ... obtained PIR multi label segmentation ')
# =================================================================
# Save the result in original format
# =================================================================
from utils import get_size_and_spacing_and_orientation_from_nifti_file, write_result_to_file
ori_size, ori_spacing, ori_orient_code, ori_aff = get_size_and_spacing_and_orientation_from_nifti_file(scan_file)
write_result_to_file(multi_label_mask, ori_orient_code, ori_spacing, ori_size, ori_aff, save_folder, scanname)