-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
244 lines (150 loc) · 5.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
def mkpath(path):
import os
if not os.path.exists(path):
os.mkdir(path)
def globalNormalization(x):
import numpy as np
import sys
from math import sqrt
"""
Normalize the data by substract mean and then devided by std
X(i) = x(i)-mean / sqrt(stdˆ2 + e)
"""
mean = np.mean(x)
std = np.std(x)
epsilon = sys.float_info.epsilon
x_vec = x.flatten().astype(np.float64)
lengh = len(x_vec)
for n in range(lengh):
x_vec[n] = (x_vec[n] - mean)/(sqrt(std**2+epsilon))
x_norm = np.resize(x_vec, x.shape)
return x_norm
def read_json_file(file):
import json
with open(file, 'r') as f:
data = f.read()
jdata = json.loads(data)
return jdata
def read_annotations_from_json_file(file):
import json, os
import numpy as np
with open(file, 'r') as f:
data = f.read()
anno = json.loads(data)
locs = []
labels = []
for i in range(len(anno)):
x = int(anno[i]['X'])
y = int(anno[i]['Y'])
z = int(anno[i]['Z'])
label = int(anno[i]['label'])
locs.append([x,y,z])
labels.append(label)
locs = np.array(locs).astype(np.float)
labels = np.array(labels)
resorting_indices = locs[:,1].argsort()
locs = locs[resorting_indices]
labels = labels[resorting_indices]
annotations = {'locations': locs, 'labels': labels}
return annotations
def read_nifti_file(file):
import nibabel as nib
data = nib.load(file)
img = data.get_fdata()
return img
def save_to_nifti_file(img, save_filename, aff=None):
import nibabel as nib
import os
import numpy as np
if aff is not None:
img = nib.Nifti1Image(img, aff)
else:
img = nib.Nifti1Image(img, np.eye(4))
nib.save(img, save_filename)
print('saved to {}'.format(save_filename))
def get_size_and_spacing_and_orientation_from_nifti_file(file):
import nibabel as nib
data = nib.load(file)
size = data.shape
# read orientation code
a, b, c = nib.orientations.aff2axcodes(data.affine)
orientation_code = a+b+c
# read voxel spacing
header = data.header
pixdim = header['pixdim']
spacing = pixdim[1:4]
aff = data.affine
return size, spacing, orientation_code, aff
def resampling(nifti_img, spacing, target_shape=None):
from nilearn.image import resample_img
import numpy as np
new_affine = np.copy(nifti_img.affine)
new_affine[:3, :3] *= 1.0/spacing
if target_shape is None:
target_shape = (nifti_img.shape*spacing).astype(np.int32)
resampled_nifti_img = resample_img(nifti_img, target_affine=new_affine,
target_shape=target_shape,
interpolation='nearest')
# also return nifti image
return resampled_nifti_img
def reorienting(img, start_orient_code, end_orient_code):
import nibabel as nib
start_orient = nib.orientations.axcodes2ornt(start_orient_code)
end_orient = nib.orientations.axcodes2ornt(end_orient_code)
trans = nib.orientations.ornt_transform(start_orient, end_orient)
return nib.orientations.apply_orientation(img, trans)
def read_isotropic_pir_img_from_nifti_file(file, itm_orient='PIR'):
import nibabel as nib
_, spacing, orientation_code, _ = get_size_and_spacing_and_orientation_from_nifti_file(file)
nifti_img = nib.load(file)
resampled_nifti_img = resampling(nifti_img, spacing)
resampled_img = resampled_nifti_img.get_fdata()
transformed_img = reorienting(resampled_img, orientation_code, itm_orient)
return transformed_img
def reorient_resample_back_to_original(img, ori_orient_code, spacing, ori_size, ori_aff, itm_orient='PIR'):
import nibabel as nib
import numpy as np
transformed_img = reorienting(img, itm_orient, ori_orient_code)
nifti_img = nib.Nifti1Image(transformed_img, ori_aff)
resampled_nifti_img = resampling(nifti_img, 1.0/spacing, ori_size)
return resampled_nifti_img.get_fdata()
def locations_from_mask(mask):
import numpy as np
from scipy.ndimage.measurements import center_of_mass
labels = np.unique(mask)[1:]
assert 0 not in labels
locations = []
for label in labels:
mask_copy = (mask == label)
x, y, z, = center_of_mass(mask_copy)
locations.append([x,y,z])
locations = np.array(locations)
locations = locations[locations[:,1].argsort()]
return locations
def annotation_from_mask(mask):
import numpy as np
from scipy.ndimage.measurements import center_of_mass
labels = np.unique(mask)[1:]
assert 0 not in labels
data = []
for label in labels:
mask_copy = (mask == label)
x, y, z, = center_of_mass(mask_copy)
annotation = dict()
annotation["label"] = int(label)
annotation["X"] = float(x)
annotation["Y"] = float(y)
annotation["Z"] = float(z)
data.append(annotation)
return data
def write_dict_to_file(data, save_filename):
import json
with open(save_filename, 'w') as outfile:
json.dump(data, outfile)
print('annotation saved to {}'.format(save_filename))
def write_result_to_file(pir_mask, ori_orient_code, spacing, ori_size, ori_aff, save_dir, filename):
import os
annotation = annotation_from_mask(pir_mask)
write_dict_to_file(annotation, os.path.join(save_dir, '{}_ctd.json'.format(filename)))
mask = reorient_resample_back_to_original(pir_mask, ori_orient_code, spacing, ori_size, ori_aff)
save_to_nifti_file(mask, os.path.join(save_dir, '{}_seg.nii.gz'.format(filename)), ori_aff)