forked from liudf0716/xfrpc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fastpbkdf2.c
399 lines (371 loc) · 17.8 KB
/
fastpbkdf2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/*
* fast-pbkdf2 - Optimal PBKDF2-HMAC calculation
* Written in 2015 by Joseph Birr-Pixton <jpixton@gmail.com>
*
* To the extent possible under law, the author(s) have dedicated all
* copyright and related and neighboring rights to this software to the
* public domain worldwide. This software is distributed without any
* warranty.
*
* You should have received a copy of the CC0 Public Domain Dedication
* along with this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include "fastpbkdf2.h"
#include <assert.h>
#include <string.h>
#include <openssl/sha.h>
/* --- MSVC doesn't support C99 --- */
#ifdef _MSC_VER
#define restrict
#define _Pragma __pragma
#endif
/* --- Common useful things --- */
#define MIN(a, b) ((a) > (b)) ? (b) : (a)
static inline void write32_be(uint32_t n, uint8_t out[4])
{
#if defined(__GNUC__) && __GNUC__ >= 4 && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
*(uint32_t *)(out) = __builtin_bswap32(n);
#else
out[0] = (n >> 24) & 0xff;
out[1] = (n >> 16) & 0xff;
out[2] = (n >> 8) & 0xff;
out[3] = n & 0xff;
#endif
}
static inline void write64_be(uint64_t n, uint8_t out[8])
{
#if defined(__GNUC__) && __GNUC__ >= 4 && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
*(uint64_t *)(out) = __builtin_bswap64(n);
#else
write32_be((n >> 32) & 0xffffffff, out);
write32_be(n & 0xffffffff, out + 4);
#endif
}
/* --- Optional OpenMP parallelisation of consecutive blocks --- */
#ifdef WITH_OPENMP
# define OPENMP_PARALLEL_FOR _Pragma("omp parallel for")
#else
# define OPENMP_PARALLEL_FOR
#endif
/* Prepare block (of blocksz bytes) to contain md padding denoting a msg-size
* message (in bytes). block has a prefix of used bytes.
*
* Message length is expressed in 32 bits (so suitable for sha1, sha256, sha512). */
static inline void md_pad(uint8_t *block, size_t blocksz, size_t used, size_t msg)
{
memset(block + used, 0, blocksz - used - 4);
block[used] = 0x80;
block += blocksz - 4;
write32_be((uint32_t) (msg * 8), block);
}
/* Internal function/type names for hash-specific things. */
#define HMAC_CTX(_name) HMAC_ ## _name ## _ctx
#define HMAC_INIT(_name) HMAC_ ## _name ## _init
#define HMAC_UPDATE(_name) HMAC_ ## _name ## _update
#define HMAC_FINAL(_name) HMAC_ ## _name ## _final
#define PBKDF2_F(_name) pbkdf2_f_ ## _name
#define PBKDF2(_name) pbkdf2_ ## _name
/* This macro expands to decls for the whole implementation for a given
* hash function. Arguments are:
*
* _name like 'sha1', added to symbol names
* _blocksz block size, in bytes
* _hashsz digest output, in bytes
* _ctx hash context type
* _init hash context initialisation function
* args: (_ctx *c)
* _update hash context update function
* args: (_ctx *c, const void *data, size_t ndata)
* _final hash context finish function
* args: (void *out, _ctx *c)
* _xform hash context raw block update function
* args: (_ctx *c, const void *data)
* _xcpy hash context raw copy function (only need copy hash state)
* args: (_ctx * restrict out, const _ctx *restrict in)
* _xtract hash context state extraction
* args: args (_ctx *restrict c, uint8_t *restrict out)
* _xxor hash context xor function (only need xor hash state)
* args: (_ctx *restrict out, const _ctx *restrict in)
*
* The resulting function is named PBKDF2(_name).
*/
#define DECL_PBKDF2(_name, _blocksz, _hashsz, _ctx, \
_init, _update, _xform, _final, _xcpy, _xtract, _xxor) \
typedef struct { \
_ctx inner; \
_ctx outer; \
} HMAC_CTX(_name); \
\
static inline void HMAC_INIT(_name)(HMAC_CTX(_name) *ctx, \
const uint8_t *key, size_t nkey) \
{ \
/* Prepare key: */ \
uint8_t k[_blocksz]; \
\
/* Shorten long keys. */ \
if (nkey > _blocksz) \
{ \
_init(&ctx->inner); \
_update(&ctx->inner, key, nkey); \
_final(k, &ctx->inner); \
\
key = k; \
nkey = _hashsz; \
} \
\
/* Standard doesn't cover case where blocksz < hashsz. */ \
assert(nkey <= _blocksz); \
\
/* Right zero-pad short keys. */ \
if (k != key) \
memcpy(k, key, nkey); \
if (_blocksz > nkey) \
memset(k + nkey, 0, _blocksz - nkey); \
\
/* Start inner hash computation */ \
uint8_t blk_inner[_blocksz]; \
uint8_t blk_outer[_blocksz]; \
\
for (size_t i = 0; i < _blocksz; i++) \
{ \
blk_inner[i] = 0x36 ^ k[i]; \
blk_outer[i] = 0x5c ^ k[i]; \
} \
\
_init(&ctx->inner); \
_update(&ctx->inner, blk_inner, sizeof blk_inner); \
\
/* And outer. */ \
_init(&ctx->outer); \
_update(&ctx->outer, blk_outer, sizeof blk_outer); \
} \
\
static inline void HMAC_UPDATE(_name)(HMAC_CTX(_name) *ctx, \
const void *data, size_t ndata) \
{ \
_update(&ctx->inner, data, ndata); \
} \
\
static inline void HMAC_FINAL(_name)(HMAC_CTX(_name) *ctx, \
uint8_t out[_hashsz]) \
{ \
_final(out, &ctx->inner); \
_update(&ctx->outer, out, _hashsz); \
_final(out, &ctx->outer); \
} \
\
\
/* --- PBKDF2 --- */ \
static inline void PBKDF2_F(_name)(const HMAC_CTX(_name) *startctx, \
uint32_t counter, \
const uint8_t *salt, size_t nsalt, \
uint32_t iterations, \
uint8_t *out) \
{ \
uint8_t countbuf[4]; \
write32_be(counter, countbuf); \
\
/* Prepare loop-invariant padding block. */ \
uint8_t Ublock[_blocksz]; \
md_pad(Ublock, _blocksz, _hashsz, _blocksz + _hashsz); \
\
/* First iteration: \
* U_1 = PRF(P, S || INT_32_BE(i)) \
*/ \
HMAC_CTX(_name) ctx = *startctx; \
HMAC_UPDATE(_name)(&ctx, salt, nsalt); \
HMAC_UPDATE(_name)(&ctx, countbuf, sizeof countbuf); \
HMAC_FINAL(_name)(&ctx, Ublock); \
_ctx result = ctx.outer; \
\
/* Subsequent iterations: \
* U_c = PRF(P, U_{c-1}) \
*/ \
for (uint32_t i = 1; i < iterations; i++) \
{ \
/* Complete inner hash with previous U */ \
_xcpy(&ctx.inner, &startctx->inner); \
_xform(&ctx.inner, Ublock); \
_xtract(&ctx.inner, Ublock); \
/* Complete outer hash with inner output */ \
_xcpy(&ctx.outer, &startctx->outer); \
_xform(&ctx.outer, Ublock); \
_xtract(&ctx.outer, Ublock); \
_xxor(&result, &ctx.outer); \
} \
\
/* Reform result into output buffer. */ \
_xtract(&result, out); \
} \
\
static inline void PBKDF2(_name)(const uint8_t *pw, size_t npw, \
const uint8_t *salt, size_t nsalt, \
uint32_t iterations, \
uint8_t *out, size_t nout) \
{ \
assert(iterations); \
assert(out && nout); \
\
/* Starting point for inner loop. */ \
HMAC_CTX(_name) ctx; \
HMAC_INIT(_name)(&ctx, pw, npw); \
\
/* How many blocks do we need? */ \
uint32_t blocks_needed = (uint32_t)(nout + _hashsz - 1) / _hashsz; \
\
OPENMP_PARALLEL_FOR \
for (uint32_t counter = 1; counter <= blocks_needed; counter++) \
{ \
uint8_t block[_hashsz]; \
PBKDF2_F(_name)(&ctx, counter, salt, nsalt, iterations, block); \
\
size_t offset = (counter - 1) * _hashsz; \
size_t taken = MIN(nout - offset, _hashsz); \
memcpy(out + offset, block, taken); \
} \
}
static inline void sha1_extract(SHA_CTX *restrict ctx, uint8_t *restrict out)
{
write32_be(ctx->h0, out);
write32_be(ctx->h1, out + 4);
write32_be(ctx->h2, out + 8);
write32_be(ctx->h3, out + 12);
write32_be(ctx->h4, out + 16);
}
static inline void sha1_cpy(SHA_CTX *restrict out, const SHA_CTX *restrict in)
{
out->h0 = in->h0;
out->h1 = in->h1;
out->h2 = in->h2;
out->h3 = in->h3;
out->h4 = in->h4;
}
static inline void sha1_xor(SHA_CTX *restrict out, const SHA_CTX *restrict in)
{
out->h0 ^= in->h0;
out->h1 ^= in->h1;
out->h2 ^= in->h2;
out->h3 ^= in->h3;
out->h4 ^= in->h4;
}
DECL_PBKDF2(sha1,
SHA_CBLOCK,
SHA_DIGEST_LENGTH,
SHA_CTX,
SHA1_Init,
SHA1_Update,
SHA1_Transform,
SHA1_Final,
sha1_cpy,
sha1_extract,
sha1_xor)
static inline void sha256_extract(SHA256_CTX *restrict ctx, uint8_t *restrict out)
{
write32_be(ctx->h[0], out);
write32_be(ctx->h[1], out + 4);
write32_be(ctx->h[2], out + 8);
write32_be(ctx->h[3], out + 12);
write32_be(ctx->h[4], out + 16);
write32_be(ctx->h[5], out + 20);
write32_be(ctx->h[6], out + 24);
write32_be(ctx->h[7], out + 28);
}
static inline void sha256_cpy(SHA256_CTX *restrict out, const SHA256_CTX *restrict in)
{
out->h[0] = in->h[0];
out->h[1] = in->h[1];
out->h[2] = in->h[2];
out->h[3] = in->h[3];
out->h[4] = in->h[4];
out->h[5] = in->h[5];
out->h[6] = in->h[6];
out->h[7] = in->h[7];
}
static inline void sha256_xor(SHA256_CTX *restrict out, const SHA256_CTX *restrict in)
{
out->h[0] ^= in->h[0];
out->h[1] ^= in->h[1];
out->h[2] ^= in->h[2];
out->h[3] ^= in->h[3];
out->h[4] ^= in->h[4];
out->h[5] ^= in->h[5];
out->h[6] ^= in->h[6];
out->h[7] ^= in->h[7];
}
DECL_PBKDF2(sha256,
SHA256_CBLOCK,
SHA256_DIGEST_LENGTH,
SHA256_CTX,
SHA256_Init,
SHA256_Update,
SHA256_Transform,
SHA256_Final,
sha256_cpy,
sha256_extract,
sha256_xor)
static inline void sha512_extract(SHA512_CTX *restrict ctx, uint8_t *restrict out)
{
write64_be(ctx->h[0], out);
write64_be(ctx->h[1], out + 8);
write64_be(ctx->h[2], out + 16);
write64_be(ctx->h[3], out + 24);
write64_be(ctx->h[4], out + 32);
write64_be(ctx->h[5], out + 40);
write64_be(ctx->h[6], out + 48);
write64_be(ctx->h[7], out + 56);
}
static inline void sha512_cpy(SHA512_CTX *restrict out, const SHA512_CTX *restrict in)
{
out->h[0] = in->h[0];
out->h[1] = in->h[1];
out->h[2] = in->h[2];
out->h[3] = in->h[3];
out->h[4] = in->h[4];
out->h[5] = in->h[5];
out->h[6] = in->h[6];
out->h[7] = in->h[7];
}
static inline void sha512_xor(SHA512_CTX *restrict out, const SHA512_CTX *restrict in)
{
out->h[0] ^= in->h[0];
out->h[1] ^= in->h[1];
out->h[2] ^= in->h[2];
out->h[3] ^= in->h[3];
out->h[4] ^= in->h[4];
out->h[5] ^= in->h[5];
out->h[6] ^= in->h[6];
out->h[7] ^= in->h[7];
}
DECL_PBKDF2(sha512,
SHA512_CBLOCK,
SHA512_DIGEST_LENGTH,
SHA512_CTX,
SHA512_Init,
SHA512_Update,
SHA512_Transform,
SHA512_Final,
sha512_cpy,
sha512_extract,
sha512_xor)
void fastpbkdf2_hmac_sha1(const uint8_t *pw, size_t npw,
const uint8_t *salt, size_t nsalt,
uint32_t iterations,
uint8_t *out, size_t nout)
{
PBKDF2(sha1)(pw, npw, salt, nsalt, iterations, out, nout);
}
void fastpbkdf2_hmac_sha256(const uint8_t *pw, size_t npw,
const uint8_t *salt, size_t nsalt,
uint32_t iterations,
uint8_t *out, size_t nout)
{
PBKDF2(sha256)(pw, npw, salt, nsalt, iterations, out, nout);
}
void fastpbkdf2_hmac_sha512(const uint8_t *pw, size_t npw,
const uint8_t *salt, size_t nsalt,
uint32_t iterations,
uint8_t *out, size_t nout)
{
PBKDF2(sha512)(pw, npw, salt, nsalt, iterations, out, nout);
}