-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathCLT_Bizarrely_Universe_(Practice).py
88 lines (66 loc) · 3.12 KB
/
CLT_Bizarrely_Universe_(Practice).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from matplotlib.animation import FuncAnimation
from IPython.display import HTML, display
def bizarrely_universe(num_galaxies, num_dimensions):
return np.random.randn(num_galaxies, num_dimensions)
def central_limit_theorem(num_galaxies, num_dimensions, num_samples, sample_size):
sample_means = []
for _ in range(num_samples):
galaxies = bizarrely_universe(num_galaxies, num_dimensions)
mean = np.mean(galaxies[:sample_size])
sample_means.append(mean)
return sample_means
def plot_clt(sample_means, num_samples):
fig, ax = plt.subplots()
ax.set_xlabel('Sample Means')
ax.set_ylabel('Probability Density')
ax.set_title('Central Limit Theorem Visualization')
# Calculate PDF using Gaussian kernel density estimation
kde = np.sum([norm(mean, 0.5).pdf(np.linspace(-5, 5, 1000)) for mean in sample_means], axis=0)
kde /= num_samples
ax.plot(np.linspace(-5, 5, 1000), kde, color='b', lw=2)
plt.show()
def animate_clt(num_samples, sample_size, num_galaxies, num_dimensions):
fig, ax = plt.subplots()
ax.set_xlabel('Sample Means')
ax.set_ylabel('Probability Density')
ax.set_title('Central Limit Theorem Animation')
# Initialize line plot for probability densities
line, = ax.plot([], [], color='b', lw=2)
# Initialize a plot to show the sample means
sample_means_line, = ax.plot([], [], 'ro', markersize=5)
def update_hist(num):
means = central_limit_theorem(num_galaxies, num_dimensions, num_samples, sample_size)
kde = np.sum([norm(mean, 0.5).pdf(np.linspace(-5, 5, 1000)) for mean in means], axis=0)
kde /= num_samples
# Update the line plot for probability densities with the new data
line.set_data(np.linspace(-5, 5, 1000), kde)
# Update the plot for sample means
sample_means_line.set_data(means, np.zeros_like(means))
# Adjust the y-axis limit to ensure visibility of probability densities
ax.set_ylim(0, 2)
# Add annotations for sample means
for mean in means:
ax.annotate(f'{mean:.2f}', xy=(mean, 0.05), xytext=(mean, 0.2), arrowprops=dict(arrowstyle='->', color='red'))
return line, sample_means_line, # Return both plot objects as a tuple
ani = FuncAnimation(fig, update_hist, frames=num_samples, interval=500, repeat=True)
# Display the animation
plt.show()
# Constants
num_galaxies = 1000
num_dimensions = 3
num_samples = 100
sample_size = 10
# Step 5: Explanation
print("Welcome to the CLT Bizarrely Universe!")
print("In this universe, galaxies are randomly scattered in a 3D space.")
print("Let's visualize the Bizarrely Universe:")
galaxies = bizarrely_universe(num_galaxies, num_dimensions)
plot_bizarrely_universe(galaxies)
print("\nNow, let's apply the Central Limit Theorem.")
print("We'll take {} samples of size {} and observe how their means converge to a Gaussian distribution.".format(num_samples, sample_size))
print("Creating the animation...")
# Display the animation
animate_clt(num_samples, sample_size, num_galaxies, num_dimensions)