-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfilter_depth.py
258 lines (208 loc) · 8.62 KB
/
filter_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/python3 python
# encoding: utf-8
'''
@author: sunhao
@contact: smartadpole@163.com
@file: filter_depth.py
@time: 2025/2/10 13:52
@desc:
'''
import sys, os
CURRENT_DIR = os.path.dirname(__file__)
sys.path.append(os.path.join(CURRENT_DIR, '../'))
from utils import inference
import argparse
import numpy as np
import cv2
from file import Walk, MkdirSimple, match_images
from test_image import WriteDepth
from tqdm.contrib import tzip
def GetArgs():
parser = argparse.ArgumentParser(description="",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--data", type=str, help="data path")
parser.add_argument('--lr_threshold', type=float, default=-1, help="ignore the disp in left and right when diff ratio larger than lr_threshold; less than 0 means no filter")
parser.add_argument('--bf', type=float, default=14.2, help="baseline length multiply focal length")
parser.add_argument('--max_depth', type=int, default=1000, help="the valide max depth (cm)")
args = parser.parse_args()
return args
def large_region(img1, img2):
img1 = img1.astype(np.uint8)
img2 = img2.astype(np.uint8)
area_threshold = 7000
num_labels1, labels1 = cv2.connectedComponents(img1, connectivity=8)
num_labels2, labels2 = cv2.connectedComponents(img2, connectivity=8)
areas2 = {}
for label in range(1, num_labels2):
areas2[label] = np.sum(labels2 == label)
output = np.zeros_like(img1)
# 遍历图1中每个连通域(标签从1开始,0为背景)
for label1 in range(1, num_labels1):
mask1 = (labels1 == label1)
overlapping_labels = labels2[mask1]
unique_labels = np.unique(overlapping_labels)
unique_labels = unique_labels[unique_labels != 0]
keep = False
for l in unique_labels:
if areas2.get(l, 0) > area_threshold:
print(areas2.get(l, 0))
keep = True
break
if keep:
output[mask1] = 255
return output
import numpy as np
def fill_holes_simple(disp):
"""
use 4-neighbors to fill holes in disp
disp: shape(H,W),0 is invalid pixel to fill
return: disp_filled
"""
disp_filled = disp.copy()
H, W = disp_filled.shape
# --- left→right
for y in range(H):
for x in range(1, W):
if disp_filled[y, x] == 0:
disp_filled[y, x] = disp_filled[y, x-1]
# --- right→left
for y in range(H):
for x in range(W-2, -1, -1):
if disp_filled[y, x] == 0:
disp_filled[y, x] = disp_filled[y, x+1]
# --- up→down
for x in range(W):
for y in range(1, H):
if disp_filled[y, x] == 0:
disp_filled[y, x] = disp_filled[y-1, x]
# --- down→up
for x in range(W):
for y in range(H-2, -1, -1):
if disp_filled[y, x] == 0:
disp_filled[y, x] = disp_filled[y+1, x]
return disp_filled
def left_right_consistency_check(dispL, dispR, alpha=0.1):
"""
使用左右一致性检查过滤 dispL 中的无效像素:
dispL[y,x] 和 dispR[y, x - dispL[y,x]] 应该一致(在阈值内)否则置0
dispL, dispR: shape(h, w)
threshold: 允许的视差差异
return: dispL_filtered
"""
if alpha < 0:
return dispL
h, w = dispL.shape
x_coords = np.arange(w)
x_r = (x_coords[None, :] - dispL).astype(int)
occlusion_r = (x_r < 0) | (x_r >= w)
x_r = np.clip(x_r, 0, w - 1) # Ensure indices are within bounds
valid = (dispL > 0)
dispL_filtered = np.where(valid, dispL, 0)
dispR_align = dispR[np.arange(h)[:, None], x_r]
diff_l = np.abs(dispL_filtered - dispR_align)
x_l = (x_coords[None, :] + dispR).astype(int)
occlusion_l = (x_l < 0) | (x_l >= w)
x_l = np.clip(x_l, 0, w - 1) # Ensure indices are within bounds
valid = (dispR > 0)
dispR_filtered = np.where(valid, dispR, 0)
dispL_align = dispL[np.arange(h)[:, None], x_l]
diff_r = np.abs(dispR_filtered - dispL_align)
diff_l_hat = diff_r[np.arange(h)[:, None], x_r]
diff = np.minimum(diff_l, diff_l_hat)
diff[occlusion_r] = diff_l[occlusion_r]
edge_occlusion = (diff_l / dispL_filtered) > 0.8
edge_occlusion_dilate = cv2.dilate(edge_occlusion.astype(np.uint8), np.ones((10, 10), np.uint8))
diff[edge_occlusion_dilate > 0] = 0
diff_no_occlusion = fill_holes_simple(diff)
threshold_map = alpha * dispL_filtered
bad = (diff > threshold_map) & valid
bad2 = (diff_no_occlusion > threshold_map) & valid
bad2 = bad2 | bad
# edge_occlusion_filter = large_region(edge_occlusion_dilate, bad)
# edge_occlusion_filter = edge_occlusion_filter > 0
# dispL_filtered[edge_occlusion_filter] = 0
# bad = bad | edge_occlusion_filter
bad = cv2.morphologyEx(bad2.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
bad = cv2.morphologyEx(bad.astype(np.uint8), cv2.MORPH_OPEN, np.ones((3, 3), np.uint8))
bad = bad > 0
dispL_filtered[bad] = -1 # disp = -1 means invalid, the dpeth less than 0
return dispL_filtered
import matplotlib
matplotlib.use('Qt5Agg')
import matplotlib.pyplot as plt
fig, axs = plt.subplots(3, 2, figsize=(10, 10))
axs[0, 0].imshow(dispL, cmap='gray')
axs[0, 0].set_title('dispL')
axs[0, 1].imshow(bad, cmap='gray')
axs[0, 1].set_title('bad')
axs[1, 0].imshow(diff_l, cmap='gray')
axs[1, 0].set_title('diff_l')
axs[1, 1].imshow(diff, cmap='gray')
axs[1, 1].set_title('diff')
axs[2, 0].imshow(dispL_filtered, cmap='gray')
axs[2, 0].set_title('dispL_filtered')
axs[2, 1].imshow(edge_occlusion, cmap='gray')
axs[2, 1].set_title('edge_occlusion')
plt.show()
return dispL_filtered
def flip_consistency_check(disp, left_img, right_img, model, threshold=1.0, n_iter=20):
"""
对输入图像水平翻转,再进行推理得到 disp_flip
然后将 disp_flip 翻转回去,与 disp 对比,差异较大的地方置为0
disp: 原始视差
return: disp_flip_filtered
"""
# 翻转左右图像
left_flip = cv2.flip(left_img, 1)
right_flip = cv2.flip(right_img, 1)
# 推理得到 disp_flip
disp_flip = inference(left_flip, right_flip, model, n_iter=n_iter)
disp_flip = cv2.flip(disp_flip, 1).astype(np.float32) # 再翻转回来
# 对比差异
diff = np.abs(disp - disp_flip)
disp_max = np.minimum(disp, disp_flip)
diff /= disp_max
threshold_per = np.percentile(diff[diff > 0], 90)
mask = diff <= min(threshold, threshold_per)
disp_flip_filtered = np.where(mask, disp, 0)
return disp_flip_filtered
def bilateral_filter_depth(depth, d=5, sigmaColor=2.0, sigmaSpace=5.0):
"""
对有效区域(>0)执行双边滤波
"""
depth_filtered = depth.copy().astype(np.float32)
# OpenCV双边滤波会把0也当成参与滤波的值,需要先做一个mask保护无效像素
valid_mask = (depth_filtered > 0).astype(np.uint8)
# 为了让双边滤波只作用于有效区域,可以将无效区域临时替换成深度均值或其他策略
valid_vals = depth_filtered[depth_filtered > 0]
if len(valid_vals) > 0:
mean_val = valid_vals.mean()
depth_filtered[depth_filtered <= 0] = mean_val
# 应用双边滤波
depth_filtered = cv2.bilateralFilter(depth_filtered, d=d, sigmaColor=sigmaColor, sigmaSpace=sigmaSpace)
# 滤波后再把原本无效区域恢复为0
depth_filtered[valid_mask == 0] = 0
return depth_filtered
def main():
args = GetArgs()
output_dir = os.path.join(args.data, 'filter')
left_root = os.path.join(args.data, 'left', 'depth')
right_root = os.path.join(args.data, 'right', 'depth')
rgb_root = os.path.join(args.data, 'rgb', 'left')
root_len_left = len(left_root.rstrip('/'))
left_files, right_files, rgb_files = match_images([left_root, right_root, rgb_root])
start = 0
left_files = left_files[start:]
right_files = right_files[start:]
rgb_files = rgb_files[start:]
for left_file, right_file, rgb_file in tzip(left_files, right_files, rgb_files):
left_img = cv2.imread(left_file, cv2.IMREAD_UNCHANGED)
rgb = cv2.imread(rgb_file, cv2.IMREAD_UNCHANGED)
right_img = cv2.imread(right_file, cv2.IMREAD_UNCHANGED)
left_img = 65535.0 / left_img * args.bf * 100 / args.max_depth
right_img = 65535.0 / right_img * args.bf * 100 / args.max_depth
dispL_filtered = left_right_consistency_check(left_img, right_img, alpha=args.lr_threshold)
name = left_file[root_len_left+1:]
WriteDepth(dispL_filtered, rgb, output_dir, name, args.bf, args.max_depth)
if __name__ == '__main__':
main()