-
Notifications
You must be signed in to change notification settings - Fork 14
/
thumos_i3d.py
68 lines (61 loc) · 1.62 KB
/
thumos_i3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
_base_ = [
"../_base_/datasets/thumos-14/features_i3d_sw.py", # dataset config
"../_base_/models/bmn.py", # model config
]
window_size = 128
dataset = dict(
train=dict(
window_size=window_size,
window_overlap_ratio=0.5,
ioa_thresh=0.9,
),
val=dict(
window_size=window_size,
window_overlap_ratio=0.5,
ioa_thresh=0.9,
),
test=dict(
window_size=window_size,
window_overlap_ratio=0.5,
),
)
model = dict(
projection=dict(in_channels=2048),
roi_head=dict(
proposal_generator=dict(dscale=64, tscale=128),
proposal_roi_extractor=dict(dscale=64, tscale=128),
),
)
solver = dict(
train=dict(batch_size=16, num_workers=4),
val=dict(batch_size=16, num_workers=4),
test=dict(batch_size=16, num_workers=4),
clip_grad_norm=1,
)
optimizer = dict(type="Adam", lr=1e-4, weight_decay=1e-4, paramwise=True)
scheduler = dict(type="MultiStepLR", milestones=[5], gamma=0.1, max_epoch=8)
inference = dict(load_from_raw_predictions=False, save_raw_prediction=False)
post_processing = dict(
nms=dict(
use_soft_nms=True,
sigma=0.3,
max_seg_num=200,
min_score=0.0001,
multiclass=False,
voting_thresh=0.95, # set 0 to disable
),
external_cls=dict(
type="UntrimmedNetTHUMOSClassifier",
path="data/thumos-14/classifiers/uNet_test.npy",
topk=2,
),
save_dict=False,
)
workflow = dict(
logging_interval=200,
checkpoint_interval=1,
val_loss_interval=-1,
val_eval_interval=1,
val_start_epoch=5,
)
work_dir = "exps/thumos/bmn_i3d_sw128"