-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmultithumos_i3d.py
46 lines (40 loc) · 1.15 KB
/
multithumos_i3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
_base_ = [
"../_base_/datasets/multithumos/features_i3d_pad.py", # dataset config
"../_base_/models/temporalmaxer.py", # model config
]
model = dict(
projection=dict(in_channels=2048, arch=(3, 0, 5)),
rpn_head=dict(num_classes=65),
)
solver = dict(
train=dict(batch_size=2, num_workers=2),
val=dict(batch_size=1, num_workers=1),
test=dict(batch_size=1, num_workers=1),
clip_grad_norm=1,
ema=True,
)
optimizer = dict(type="AdamW", lr=1e-4, weight_decay=0.05, paramwise=True)
scheduler = dict(type="LinearWarmupCosineAnnealingLR", warmup_epoch=5, max_epoch=65)
inference = dict(load_from_raw_predictions=False, save_raw_prediction=False)
post_processing = dict(
pre_nms_topk=8000,
pre_nms_thresh=0.001,
nms=dict(
use_soft_nms=True,
sigma=0.5,
max_seg_num=8000,
min_score=0.001,
multiclass=True,
voting_thresh=0.7, # set 0 to disable
),
save_dict=False,
)
workflow = dict(
logging_interval=20,
checkpoint_interval=1,
val_loss_interval=1,
val_eval_interval=1,
val_start_epoch=29,
end_epoch=50,
)
work_dir = "exps/multithumos/temporalmaxer_i3d"