-
Notifications
You must be signed in to change notification settings - Fork 20
/
profiler.py
164 lines (144 loc) · 6.37 KB
/
profiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
Copyright Snap Inc. 2021. This sample code is made available by Snap Inc. for informational purposes only.
No license, whether implied or otherwise, is granted in or to such code (including any rights to copy, modify,
publish, distribute and/or commercialize such code), unless you have entered into a separate agreement for such rights.
Such code is provided as-is, without warranty of any kind, express or implied, including any warranties of merchantability,
title, fitness for a particular purpose, non-infringement, or that such code is free of defects, errors or viruses.
In no event will Snap Inc. be liable for any damages or losses of any kind arising from the sample code or your use thereof.
"""
import os
import random
import sys
import time
import warnings
import numpy as np
import torch
from torch.backends import cudnn
from data import create_dataloader
import common as mc
from utils.logger import Logger
from utils.common import load_pretrained_student, load_pretrained_spade_student, shrink
from torchprofile import profile_macs
def set_seed(seed):
cudnn.benchmark = False
cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
class Profiler:
def __init__(self, task):
if task == 'train':
from options.train_options import TrainOptions as Options
from models import create_model as create_model
elif task == 'distill':
from options.distill_options import DistillOptions as Options
from distillers import create_distiller as create_model
else:
raise NotImplementedError('Unknown task [%s]!!!' % task)
opt = Options().parse()
opt.tensorboard_dir = opt.log_dir if opt.tensorboard_dir is None else opt.tensorboard_dir
print(' '.join(sys.argv))
if opt.phase != 'train':
warnings.warn('You are not using training set for %s!!!' % task)
with open(os.path.join(opt.log_dir, 'opt.txt'), 'a') as f:
f.write(' '.join(sys.argv) + '\n')
set_seed(opt.seed)
dataloader = create_dataloader(opt)
dataset_size = len(dataloader.dataset)
print('The number of training images = %d' % dataset_size)
opt.iters_per_epoch = len(dataloader)
if opt.dataset_mode in ['aligned', 'unaligned']:
opt.data_channel, opt.data_height, opt.data_width = next(
iter(dataloader))['A' if opt.direction ==
'AtoB' else 'B'].shape[1:]
elif opt.dataset_mode in ['cityscapes']:
input_ = next(iter(dataloader))
opt.data_height, opt.data_width = input_['label'].shape[2:]
opt.data_channel = opt.input_nc
if opt.contain_dontcare_label:
opt.data_channel += 1
if not opt.no_instance:
opt.data_channel += input_['instance'].shape[1]
else:
raise NotImplementedError
print(
f'data shape is: channel={opt.data_channel}, height={opt.data_height}, width={opt.data_width}.'
)
model = create_model(opt)
model.setup(opt)
logger = Logger(opt)
if getattr(opt, 'pretrained_student_G_path', '') and task == 'distill':
if 'spade' in opt.teacher_netG:
assert 'spade' in opt.student_netG
assert 'spade' in opt.pretrained_netG
load_pretrained_spade_student(model, opt)
else:
load_pretrained_student(model, opt)
self.opt = opt
self.dataloader = dataloader
self.model = model
self.logger = logger
self.task = task
modules_on_one_gpu = getattr(model, 'modules_on_one_gpu', model)
if self.task == 'distill':
logger.print_info(
f'netG teacher FLOPs: {mc.unwrap_model(modules_on_one_gpu.netG_teacher).n_macs}.'
)
logger.print_info(
f'netG student FLOPs: {mc.unwrap_model(modules_on_one_gpu.netG_student).n_macs}.'
)
data_input = torch.ones(
[1, opt.data_channel, opt.data_height,
opt.data_width]).to(model.device)
macs_t = profile_macs(
mc.unwrap_model(modules_on_one_gpu.netG_teacher).to(
model.device), data_input)
macs_s = profile_macs(
mc.unwrap_model(modules_on_one_gpu.netG_student).to(
model.device), data_input)
params_t = 0
params_s = 0
for p in modules_on_one_gpu.netG_teacher.parameters():
params_t += p.numel()
for p in modules_on_one_gpu.netG_student.parameters():
params_s += p.numel()
logger.print_info(
f'netG teacher FLOPs: {macs_t}; Params: {params_t}.')
logger.print_info(
f'netG student FLOPs: {macs_s}; Params: {params_s}.')
def evaluate(self, epoch, iter, message, save_image=False):
start_time = time.time()
metrics = self.model.evaluate_model(iter, save_image=save_image)
self.logger.print_current_metrics(epoch, iter, metrics,
time.time() - start_time)
self.logger.print_info(message)
def start(self):
opt = self.opt
dataloader = self.dataloader
model = self.model
logger = self.logger
if self.task == 'distill':
N_test = 10
pruning_time_list = []
for i in range(5):
shrink(model, opt)
for i in range(N_test):
pruning_time = shrink(model, opt)
pruning_time_list.append(pruning_time)
print(
f'Average pruning time for {N_test} experiments: {np.mean(pruning_time_list):.2f}s.'
)
save_image = True
evaluate = True
if getattr(opt, 'pretrained_student_G_path',
'') and self.task == 'distill':
if 'spade' in opt.teacher_netG:
assert 'spade' in opt.student_netG
assert 'spade' in opt.pretrained_netG
load_pretrained_spade_student(model, opt)
else:
load_pretrained_student(model, opt)
if evaluate:
self.evaluate(0, 0, 'Model evaluated.', save_image=save_image)