-
Notifications
You must be signed in to change notification settings - Fork 117
/
args.py
executable file
·110 lines (89 loc) · 4.41 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
### program configuration
class Args():
def __init__(self):
### if clean tensorboard
self.clean_tensorboard = False
### Which CUDA GPU device is used for training
self.cuda = 1
### Which GraphRNN model variant is used.
# The simple version of Graph RNN
# self.note = 'GraphRNN_MLP'
# The dependent Bernoulli sequence version of GraphRNN
self.note = 'GraphRNN_RNN'
## for comparison, removing the BFS compoenent
# self.note = 'GraphRNN_MLP_nobfs'
# self.note = 'GraphRNN_RNN_nobfs'
### Which dataset is used to train the model
# self.graph_type = 'DD'
# self.graph_type = 'caveman'
# self.graph_type = 'caveman_small'
# self.graph_type = 'caveman_small_single'
# self.graph_type = 'community4'
self.graph_type = 'grid'
# self.graph_type = 'grid_small'
# self.graph_type = 'ladder_small'
# self.graph_type = 'enzymes'
# self.graph_type = 'enzymes_small'
# self.graph_type = 'barabasi'
# self.graph_type = 'barabasi_small'
# self.graph_type = 'citeseer'
# self.graph_type = 'citeseer_small'
# self.graph_type = 'barabasi_noise'
# self.noise = 10
#
# if self.graph_type == 'barabasi_noise':
# self.graph_type = self.graph_type+str(self.noise)
# if none, then auto calculate
self.max_num_node = None # max number of nodes in a graph
self.max_prev_node = None # max previous node that looks back
### network config
## GraphRNN
if 'small' in self.graph_type:
self.parameter_shrink = 2
else:
self.parameter_shrink = 1
self.hidden_size_rnn = int(128/self.parameter_shrink) # hidden size for main RNN
self.hidden_size_rnn_output = 16 # hidden size for output RNN
self.embedding_size_rnn = int(64/self.parameter_shrink) # the size for LSTM input
self.embedding_size_rnn_output = 8 # the embedding size for output rnn
self.embedding_size_output = int(64/self.parameter_shrink) # the embedding size for output (VAE/MLP)
self.batch_size = 32 # normal: 32, and the rest should be changed accordingly
self.test_batch_size = 32
self.test_total_size = 1000
self.num_layers = 4
### training config
self.num_workers = 4 # num workers to load data, default 4
self.batch_ratio = 32 # how many batches of samples per epoch, default 32, e.g., 1 epoch = 32 batches
self.epochs = 3000 # now one epoch means self.batch_ratio x batch_size
self.epochs_test_start = 100
self.epochs_test = 100
self.epochs_log = 100
self.epochs_save = 100
self.lr = 0.003
self.milestones = [400, 1000]
self.lr_rate = 0.3
self.sample_time = 2 # sample time in each time step, when validating
### output config
# self.dir_input = "/dfs/scratch0/jiaxuany0/"
self.dir_input = "./"
self.model_save_path = self.dir_input+'model_save/' # only for nll evaluation
self.graph_save_path = self.dir_input+'graphs/'
self.figure_save_path = self.dir_input+'figures/'
self.timing_save_path = self.dir_input+'timing/'
self.figure_prediction_save_path = self.dir_input+'figures_prediction/'
self.nll_save_path = self.dir_input+'nll/'
self.load = False # if load model, default lr is very low
self.load_epoch = 3000
self.save = True
### baseline config
# self.generator_baseline = 'Gnp'
self.generator_baseline = 'BA'
# self.metric_baseline = 'general'
# self.metric_baseline = 'degree'
self.metric_baseline = 'clustering'
### filenames to save intemediate and final outputs
self.fname = self.note + '_' + self.graph_type + '_' + str(self.num_layers) + '_' + str(self.hidden_size_rnn) + '_'
self.fname_pred = self.note+'_'+self.graph_type+'_'+str(self.num_layers)+'_'+ str(self.hidden_size_rnn)+'_pred_'
self.fname_train = self.note+'_'+self.graph_type+'_'+str(self.num_layers)+'_'+ str(self.hidden_size_rnn)+'_train_'
self.fname_test = self.note + '_' + self.graph_type + '_' + str(self.num_layers) + '_' + str(self.hidden_size_rnn) + '_test_'
self.fname_baseline = self.graph_save_path + self.graph_type + self.generator_baseline+'_'+self.metric_baseline