Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

从性能方面对策略进行优化的方案,可大幅缩短运行时间,附上部分代码 #53

Open
myhhub opened this issue Apr 11, 2023 · 2 comments

Comments

@myhhub
Copy link

myhhub commented Apr 11, 2023

更多参照:https://github.com/myhhub/InStock
下面给一些示例:

原始的:
    data.loc[:, 'ma250'] = pd.Series(tl.MA(data['close'].values, 250), index=data.index.values)
优化后的:
   data.loc[:, 'ma250'] = tl.MA(data['close'].values, timeperiod=250)
原始的:
    for i in range(1, len(data)):
        if data.iloc[i - 1]['p_change'] >= 9.5 and data.iloc[i]['p_change'] >= 9.5:
            return True
优化后的:
for _p_change in data['p_change'].values:
        if _p_change >= 9.5:
            if previous_p_change >= 9.5:
                return True
            else:
                previous_p_change = _p_change
        else:
            previous_p_change = 0.0
原始的:
for index, row in data.iterrows():
        if row['close'] > highest_row['close']:
            highest_row = row
        elif row['close'] < lowest_row['close']:
            lowest_row = row
优化后的:
    for _close, _volume, _date in zip(data['close'].values, data['volume'].values, data['date'].values):
        if _close > highest_row[0]:
            highest_row[0] = _close
            highest_row[1] = _volume
            highest_row[2] = _date
        elif _close < lowest_row[0]:
            lowest_row[0] = _close
            lowest_row[1] = _volume
            lowest_row[2] = _date
原始的:
    for i in range(1, len(data)):
        if data.iloc[i - 1]['p_change'] < -7 \
                or (data.iloc[i]['close'] - data.iloc[i]['open']) / data.iloc[i]['open'] * 100 < -7 \
                or data.iloc[i - 1]['p_change'] + data.iloc[i]['p_change'] < -10 \
                or (data.iloc[i]['close'] - data.iloc[i - 1]['open']) / data.iloc[i - 1]['open'] * 100 < -10:
优化后的:
    for _p_change, _close, _open in zip(data['p_change'].values, data['close'].values, data['open'].values):
        if _p_change < -7 or (_close - _open) / _open * 100 < -7 \
                or previous_p_change + _p_change < -10 \
                or (_close - previous_open)/previous_open * 100 < -10:
            return False
@myhhub myhhub changed the title 我从性能方面对所有的策略进行了优化,大幅缩短运行时间 从性能方面对策略进行优化的方案,并附上优化代码 Apr 11, 2023
@myhhub myhhub changed the title 从性能方面对策略进行优化的方案,并附上优化代码 从性能方面对策略进行优化的方案,可大幅缩短运行时间,附上部分代码 Apr 11, 2023
@sngyai
Copy link
Owner

sngyai commented Apr 14, 2023

这可真是太棒了!另外方便提个PR吗?

@nightmaring
Copy link

楼主平常用这个吗

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants