-
Notifications
You must be signed in to change notification settings - Fork 1
/
config.yaml
65 lines (53 loc) · 1.59 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
hydra:
output_subdir: null
run:
dir: .
sweep:
dir: .
subdir: .
job_logging:
root:
level: INFO
job:
env_set:
TOKENIZERS_PARALLELISM: "false"
defaults:
- base_config # see src/arguments.py
- _self_
- override hydra/hydra_logging: disabled
- override hydra/job_logging: disabled
wandb:
log: true
entity: ${user} # Change this to your wandb username.
project: ccm
group: ${basename:${data.dataset_name}}/${basename:${model.model_name_or_path}}-${training.comp.comp_type}-ntok${training.comp.num_comp_tokens}
name: ${basename:${model.model_name_or_path}}-${wandb.tag}
model:
pretrained: true
training:
predict_with_generate: true
generation_max_length: 128
do_train: true
do_eval: true
report_to: "none" # THIS MUST BE NONE. Use wandb args to control logging.
dataloader_num_workers: 0 # If > 0, some weird process hanging might occur.
# Default training params: effective batch size = 16
num_train_epochs: 3
fp16: false
fp16_full_eval: false
per_device_train_batch_size: 8
per_device_eval_batch_size: 8
gradient_accumulation_steps: 2
# Save/eval every 1000 steps and track best model
overwrite_output_dir: false # Resume training from checkpoint if it exists.
evaluation_strategy: steps
save_strategy: steps
eval_steps: 1000
save_steps: 1000
save_total_limit: 1
load_best_model_at_end: false # Always save the best model, eval_steps should be equal to save_steps
logging_steps: 200
# metric_for_best_model: unseen_rougeL
greater_is_better: true
max_source_length: 256
max_target_length: 256