-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy path2015final.v
1053 lines (897 loc) · 28.3 KB
/
2015final.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Import SfLib.
Require Import Program.
Require Import NPeano.
(* Important:
- You are NOT allowed to use the [admit] tactic.
- You are ALLOWED to use any tactics including:
[tauto], [intuition], [firstorder], [omega].
- Just leave [exact FILL_IN_HERE] for those problems that you fail to prove.
- Here is a (incomplete) list of tactics and tacticals you have learned.
[intros]
[revert]
[reflexivity]
[simpl]
[rewrite]
[induction]
[assert]
[unfold]
[eapply] ... [with] ... [in] ...
[destruct] ... [as] ... [eqn:] ...
[inversion]
[replace ... with ...]
[symmetry]
[generalize dependent]
[split]
[exists]
[clear]
[subst]
[rename] ... [into] ...
[contradiction]
[constructor]
[eauto]
[repeat]
[try]
[;]
*)
Definition FILL_IN_HERE {T: Type} : T. Admitted.
Axiom functional_extensionality : forall {X Y: Type} {f g : X -> Y},
(forall (x: X), f x = g x) -> f = g.
(**************
Imp Language
***************)
Definition state := id -> nat.
Definition empty_state : state :=
fun _ => 0.
Definition update (st : state) (x : id) (n : nat) : state :=
fun x' => if eq_id_dec x x' then n else st x'.
Inductive aexp : Type :=
| ANum : nat -> aexp
| AId : id -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp.
Tactic Notation "aexp_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "ANum" | Case_aux c "AId" | Case_aux c "APlus"
| Case_aux c "AMinus" | Case_aux c "AMult" ].
Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.
Tactic Notation "bexp_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "BTrue" | Case_aux c "BFalse" | Case_aux c "BEq"
| Case_aux c "BLe" | Case_aux c "BNot" | Case_aux c "BAnd" ].
Fixpoint aeval (st : state) (a : aexp) : nat :=
match a with
| ANum n => n
| AId x => st x
| APlus a1 a2 => (aeval st a1) + (aeval st a2)
| AMinus a1 a2 => (aeval st a1) - (aeval st a2)
| AMult a1 a2 => (aeval st a1) * (aeval st a2)
end.
Fixpoint beval (st : state) (b : bexp) : bool :=
match b with
| BTrue => true
| BFalse => false
| BEq a1 a2 => beq_nat (aeval st a1) (aeval st a2)
| BLe a1 a2 => ble_nat (aeval st a1) (aeval st a2)
| BNot b1 => negb (beval st b1)
| BAnd b1 b2 => andb (beval st b1) (beval st b2)
end.
Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.
Tactic Notation "com_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "SKIP" | Case_aux c "::=" | Case_aux c ";;"
| Case_aux c "IFB" | Case_aux c "WHILE" ].
Notation "'SKIP'" :=
CSkip.
Notation "x '::=' a" :=
(CAss x a) (at level 60).
Notation "c1 ;; c2" :=
(CSeq c1 c2) (at level 80, right associativity).
Notation "'WHILE' b 'DO' c 'END'" :=
(CWhile b c) (at level 80, right associativity).
Notation "'IFB' c1 'THEN' c2 'ELSE' c3 'FI'" :=
(CIf c1 c2 c3) (at level 80, right associativity).
Reserved Notation "c1 '/' st '||' st'" (at level 40, st at level 39).
Inductive ceval : com -> state -> state -> Prop :=
| E_Skip : forall st,
SKIP / st || st
| E_Ass : forall st a1 n x,
aeval st a1 = n ->
(x ::= a1) / st || (update st x n)
| E_Seq : forall c1 c2 st st' st'',
c1 / st || st' ->
c2 / st' || st'' ->
(c1 ;; c2) / st || st''
| E_IfTrue : forall st st' b c1 c2,
beval st b = true ->
c1 / st || st' ->
(IFB b THEN c1 ELSE c2 FI) / st || st'
| E_IfFalse : forall st st' b c1 c2,
beval st b = false ->
c2 / st || st' ->
(IFB b THEN c1 ELSE c2 FI) / st || st'
| E_WhileEnd : forall b st c,
beval st b = false ->
(WHILE b DO c END) / st || st
| E_WhileLoop : forall st st' st'' b c,
beval st b = true ->
c / st || st' ->
(WHILE b DO c END) / st' || st'' ->
(WHILE b DO c END) / st || st''
where "c1 '/' st '||' st'" := (ceval c1 st st').
Hint Constructors ceval.
Tactic Notation "ceval_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "E_Skip" | Case_aux c "E_Ass" | Case_aux c "E_Seq"
| Case_aux c "E_IfTrue" | Case_aux c "E_IfFalse"
| Case_aux c "E_WhileEnd" | Case_aux c "E_WhileLoop" ].
(**************
Hoare Logic & Rules
***************)
Definition Assertion := state -> Prop.
Definition assert_implies (P Q : Assertion) : Prop :=
forall st, P st -> Q st.
Notation "P ->> Q" :=
(assert_implies P Q) (at level 80) : hoare_spec_scope.
Open Scope hoare_spec_scope.
Notation "P <<->> Q" :=
(P ->> Q /\ Q ->> P) (at level 80) : hoare_spec_scope.
Definition hoare_triple
(P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st',
c / st || st' ->
P st ->
Q st'.
Notation "{{ P }} c {{ Q }}" :=
(hoare_triple P c Q) (at level 90, c at next level)
: hoare_spec_scope.
Definition assn_sub X a P : Assertion :=
fun (st : state) =>
P (update st X (aeval st a)).
Notation "P [ X |-> a ]" := (assn_sub X a P) (at level 10).
Theorem hoare_asgn : forall Q X a,
{{Q [X |-> a]}} (X ::= a) {{Q}}.
Proof.
unfold hoare_triple.
intros Q X a st st' HE HQ.
inversion HE. subst.
unfold assn_sub in HQ. assumption. Qed.
Theorem hoare_consequence_pre : forall (P P' Q : Assertion) c,
{{P'}} c {{Q}} ->
P ->> P' ->
{{P}} c {{Q}}.
Proof.
intros P P' Q c Hhoare Himp.
intros st st' Hc HP. apply (Hhoare st st').
assumption. apply Himp. assumption. Qed.
Theorem hoare_consequence_post : forall (P Q Q' : Assertion) c,
{{P}} c {{Q'}} ->
Q' ->> Q ->
{{P}} c {{Q}}.
Proof.
intros P Q Q' c Hhoare Himp.
intros st st' Hc HP.
apply Himp.
apply (Hhoare st st').
assumption. assumption. Qed.
Theorem hoare_consequence : forall (P P' Q Q' : Assertion) c,
{{P'}} c {{Q'}} ->
P ->> P' ->
Q' ->> Q ->
{{P}} c {{Q}}.
Proof.
intros P P' Q Q' c Hht HPP' HQ'Q.
apply hoare_consequence_pre with (P' := P').
apply hoare_consequence_post with (Q' := Q').
assumption. assumption. assumption. Qed.
Theorem hoare_skip : forall P,
{{P}} SKIP {{P}}.
Proof.
intros P st st' H HP. inversion H. subst.
assumption. Qed.
Theorem hoare_seq : forall P Q R c1 c2,
{{Q}} c2 {{R}} ->
{{P}} c1 {{Q}} ->
{{P}} c1;;c2 {{R}}.
Proof.
intros P Q R c1 c2 H1 H2 st st' H12 Pre.
inversion H12; subst.
apply (H1 st'0 st'); try assumption.
apply (H2 st st'0); assumption. Qed.
Theorem hoare_if : forall Q1 Q2 Q b c1 c2,
{{Q1}} c1 {{Q}} ->
{{Q2}} c2 {{Q}} ->
{{fun st => (beval st b = true -> Q1 st) /\ (beval st b = false -> Q2 st) }}
(IFB b THEN c1 ELSE c2 FI)
{{Q}}.
Proof.
intros Q1 Q2 Q b c1 c2 HTrue HFalse st st' HE [HQ1 HQ2].
inversion HE; subst; eauto.
Qed.
Lemma hoare_while : forall P b c,
{{fun st => P st /\ beval st b = true}} c {{P}} ->
{{P}} WHILE b DO c END {{fun st => P st /\ beval st b = false}}.
Proof.
intros P b c Hhoare st st' He HP.
(* Like we've seen before, we need to reason by induction
on [He], because, in the "keep looping" case, its hypotheses
talk about the whole loop instead of just [c]. *)
remember (WHILE b DO c END) as wcom eqn:Heqwcom.
ceval_cases (induction He) Case;
try (inversion Heqwcom); subst; clear Heqwcom.
Case "E_WhileEnd".
split. assumption. assumption.
Case "E_WhileLoop".
apply IHHe2. reflexivity.
apply (Hhoare st st'). assumption.
split. assumption. assumption.
Qed.
Definition is_wp P c Q :=
{{P}} c {{Q}} /\
forall P', {{P'}} c {{Q}} -> (P' ->> P).
(**************
STLC Language
***************)
Inductive ty : Type :=
| TArrow : ty -> ty -> ty
| TNat : ty
| TUnit : ty
| TProd : ty -> ty -> ty
| TSum : ty -> ty -> ty
| TList : ty -> ty.
Tactic Notation "T_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "TArrow" | Case_aux c "TNat"
| Case_aux c "TProd" | Case_aux c "TUnit"
| Case_aux c "TSum" | Case_aux c "TList" ].
Inductive tm : Type :=
(* pure STLC *)
| tvar : id -> tm
| tapp : tm -> tm -> tm
| tabs : id -> ty -> tm -> tm
(* numbers *)
| tnat : nat -> tm
| tsucc : tm -> tm
| tpred : tm -> tm
| tmult : tm -> tm -> tm
| tif0 : tm -> tm -> tm -> tm
(* units *)
| tunit : tm
(* pairs *)
| tpair : tm -> tm -> tm
| tfst : tm -> tm
| tsnd : tm -> tm
(* let *)
| tlet : id -> tm -> tm -> tm
(* i.e., [let x = t1 in t2] *)
(* sums *)
| tinl : ty -> tm -> tm
| tinr : ty -> tm -> tm
| tcase : tm -> id -> tm -> id -> tm -> tm
(* i.e., [case t0 of inl x1 => t1 | inr x2 => t2] *)
(* lists *)
| tnil : ty -> tm
| tcons : tm -> tm -> tm
| tlcase : tm -> tm -> id -> id -> tm -> tm
(* i.e., [lcase t1 of | nil -> t2 | x::y -> t3] *)
(* fix *)
| tfix : tm -> tm.
Tactic Notation "t_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "tvar" | Case_aux c "tapp" | Case_aux c "tabs"
| Case_aux c "tnat" | Case_aux c "tsucc" | Case_aux c "tpred"
| Case_aux c "tmult" | Case_aux c "tif0"
| Case_aux c "tpair" | Case_aux c "tfst" | Case_aux c "tsnd"
| Case_aux c "tunit" | Case_aux c "tlet"
| Case_aux c "tinl" | Case_aux c "tinr" | Case_aux c "tcase"
| Case_aux c "tnil" | Case_aux c "tcons" | Case_aux c "tlcase"
| Case_aux c "tfix" ].
Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=
match t with
| tvar y =>
if eq_id_dec x y then s else t
| tabs y T t1 =>
tabs y T (if eq_id_dec x y then t1 else (subst x s t1))
| tapp t1 t2 =>
tapp (subst x s t1) (subst x s t2)
| tnat n =>
tnat n
| tsucc t1 =>
tsucc (subst x s t1)
| tpred t1 =>
tpred (subst x s t1)
| tmult t1 t2 =>
tmult (subst x s t1) (subst x s t2)
| tif0 t1 t2 t3 =>
tif0 (subst x s t1) (subst x s t2) (subst x s t3)
| tpair t1 t2 =>
tpair (subst x s t1) (subst x s t2)
| tfst t1 =>
tfst (subst x s t1)
| tsnd t1 =>
tsnd (subst x s t1)
| tunit => tunit
| tlet y t1 t2 =>
tlet y (subst x s t1) (if eq_id_dec x y then t2 else (subst x s t2))
| tinl T t1 =>
tinl T (subst x s t1)
| tinr T t1 =>
tinr T (subst x s t1)
| tcase t0 y1 t1 y2 t2 =>
tcase (subst x s t0)
y1 (if eq_id_dec x y1 then t1 else (subst x s t1))
y2 (if eq_id_dec x y2 then t2 else (subst x s t2))
| tnil T =>
tnil T
| tcons t1 t2 =>
tcons (subst x s t1) (subst x s t2)
| tlcase t1 t2 y1 y2 t3 =>
tlcase (subst x s t1) (subst x s t2) y1 y2
(if eq_id_dec x y1 then
t3
else if eq_id_dec x y2 then t3
else (subst x s t3))
| tfix t1 => tfix (subst x s t1)
end.
Notation "'[' x ':=' s ']' t" := (subst x s t) (at level 20).
Inductive value : tm -> Prop :=
| v_abs : forall x T11 t12,
value (tabs x T11 t12)
(* Numbers are values: *)
| v_nat : forall n1,
value (tnat n1)
(* A pair is a value if both components are: *)
| v_pair : forall v1 v2,
value v1 ->
value v2 ->
value (tpair v1 v2)
(* A unit is always a value *)
| v_unit : value tunit
(* A tagged value is a value: *)
| v_inl : forall v T,
value v ->
value (tinl T v)
| v_inr : forall v T,
value v ->
value (tinr T v)
(* A list is a value iff its head and tail are values: *)
| v_lnil : forall T, value (tnil T)
| v_lcons : forall v1 vl,
value v1 ->
value vl ->
value (tcons v1 vl)
(* A fix is a value *)
| v_fix : forall v,
value v ->
value (tfix v)
.
Hint Constructors value.
Reserved Notation "t1 '==>' t2" (at level 40).
Inductive step : tm -> tm -> Prop :=
| ST_AppAbs : forall x T11 t12 v2,
value v2 ->
(tapp (tabs x T11 t12) v2) ==> [x:=v2]t12
| ST_App1 : forall t1 t1' t2,
t1 ==> t1' ->
(tapp t1 t2) ==> (tapp t1' t2)
| ST_App2 : forall v1 t2 t2',
value v1 ->
t2 ==> t2' ->
(tapp v1 t2) ==> (tapp v1 t2')
(* nats *)
| ST_Succ1 : forall t1 t1',
t1 ==> t1' ->
(tsucc t1) ==> (tsucc t1')
| ST_SuccNat : forall n1,
(tsucc (tnat n1)) ==> (tnat (S n1))
| ST_Pred : forall t1 t1',
t1 ==> t1' ->
(tpred t1) ==> (tpred t1')
| ST_PredNat : forall n1,
(tpred (tnat n1)) ==> (tnat (pred n1))
| ST_Mult1 : forall t1 t1' t2,
t1 ==> t1' ->
(tmult t1 t2) ==> (tmult t1' t2)
| ST_Mult2 : forall v1 t2 t2',
value v1 ->
t2 ==> t2' ->
(tmult v1 t2) ==> (tmult v1 t2')
| ST_MultNats : forall n1 n2,
(tmult (tnat n1) (tnat n2)) ==> (tnat (mult n1 n2))
| ST_If01 : forall t1 t1' t2 t3,
t1 ==> t1' ->
(tif0 t1 t2 t3) ==> (tif0 t1' t2 t3)
| ST_If0Zero : forall t2 t3,
(tif0 (tnat 0) t2 t3) ==> t2
| ST_If0Nonzero : forall n t2 t3,
(tif0 (tnat (S n)) t2 t3) ==> t3
(* pairs *)
| ST_Pair1 : forall t1 t1' t2,
t1 ==> t1' ->
(tpair t1 t2) ==> (tpair t1' t2)
| ST_Pair2 : forall v1 t2 t2',
value v1 ->
t2 ==> t2' ->
(tpair v1 t2) ==> (tpair v1 t2')
| ST_Fst1 : forall t1 t1',
t1 ==> t1' ->
(tfst t1) ==> (tfst t1')
| ST_FstPair : forall v1 v2,
value v1 ->
value v2 ->
(tfst (tpair v1 v2)) ==> v1
| ST_Snd1 : forall t1 t1',
t1 ==> t1' ->
(tsnd t1) ==> (tsnd t1')
| ST_SndPair : forall v1 v2,
value v1 ->
value v2 ->
(tsnd (tpair v1 v2)) ==> v2
(* let *)
| ST_Let1 : forall x t1 t1' t2,
t1 ==> t1' ->
(tlet x t1 t2) ==> (tlet x t1' t2)
| ST_LetValue : forall x v1 t2,
value v1 ->
(tlet x v1 t2) ==> [x:=v1]t2
(* sums *)
| ST_Inl : forall t1 t1' T,
t1 ==> t1' ->
(tinl T t1) ==> (tinl T t1')
| ST_Inr : forall t1 t1' T,
t1 ==> t1' ->
(tinr T t1) ==> (tinr T t1')
| ST_Case : forall t0 t0' x1 t1 x2 t2,
t0 ==> t0' ->
(tcase t0 x1 t1 x2 t2) ==> (tcase t0' x1 t1 x2 t2)
| ST_CaseInl : forall v0 x1 t1 x2 t2 T,
value v0 ->
(tcase (tinl T v0) x1 t1 x2 t2) ==> [x1:=v0]t1
| ST_CaseInr : forall v0 x1 t1 x2 t2 T,
value v0 ->
(tcase (tinr T v0) x1 t1 x2 t2) ==> [x2:=v0]t2
(* lists *)
| ST_Cons1 : forall t1 t1' t2,
t1 ==> t1' ->
(tcons t1 t2) ==> (tcons t1' t2)
| ST_Cons2 : forall v1 t2 t2',
value v1 ->
t2 ==> t2' ->
(tcons v1 t2) ==> (tcons v1 t2')
| ST_Lcase1 : forall t1 t1' t2 x1 x2 t3,
t1 ==> t1' ->
(tlcase t1 t2 x1 x2 t3) ==> (tlcase t1' t2 x1 x2 t3)
| ST_LcaseNil : forall T t2 x1 x2 t3,
(tlcase (tnil T) t2 x1 x2 t3) ==> t2
| ST_LcaseCons : forall v1 vl t2 x1 x2 t3,
value v1 ->
value vl ->
(tlcase (tcons v1 vl) t2 x1 x2 t3) ==> (subst x2 vl (subst x1 v1 t3))
(* fix *)
| ST_Fix1 : forall t1 t1',
t1 ==> t1' ->
(tfix t1) ==> (tfix t1')
| ST_AppFix : forall F1 v2,
value F1 ->
value v2 ->
(tapp (tfix F1) v2) ==> (tapp (tapp F1 (tfix F1)) v2)
where "t1 '==>' t2" := (step t1 t2).
Tactic Notation "step_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "ST_AppAbs" | Case_aux c "ST_App1" | Case_aux c "ST_App2"
| Case_aux c "ST_Succ1" | Case_aux c "ST_SuccNat"
| Case_aux c "ST_Pred1" | Case_aux c "ST_PredNat"
| Case_aux c "ST_Mult1" | Case_aux c "ST_Mult2"
| Case_aux c "ST_MultNats" | Case_aux c "ST_If01"
| Case_aux c "ST_If0Zero" | Case_aux c "ST_If0Nonzero"
| Case_aux c "ST_Pair1" | Case_aux c "ST_Pair2"
| Case_aux c "ST_Fst1" | Case_aux c "ST_FstPair"
| Case_aux c "ST_Snd1" | Case_aux c "ST_SndPair"
| Case_aux c "ST_Let1" | Case_aux c "ST_LetValue"
| Case_aux c "ST_Inl" | Case_aux c "ST_Inr" | Case_aux c "ST_Case"
| Case_aux c "ST_CaseInl" | Case_aux c "ST_CaseInr"
| Case_aux c "ST_Cons1" | Case_aux c "ST_Cons2" | Case_aux c "ST_Lcase1"
| Case_aux c "ST_LcaseNil" | Case_aux c "ST_LcaseCons"
| Case_aux c "ST_Fix1" | Case_aux c "ST_AppFix"
].
Notation multistep := (multi step).
Notation "t1 '==>*' t2" := (multistep t1 t2) (at level 40).
Hint Constructors step.
Hint Constructors multi.
Definition context := partial_map ty.
Reserved Notation "Gamma '|--' t '\in' T" (at level 40).
Inductive has_type : context -> tm -> ty -> Prop :=
(* Typing rules for proper terms *)
| T_Var : forall Gamma x T,
Gamma x = Some T ->
Gamma |-- (tvar x) \in T
| T_Abs : forall Gamma x T11 T12 t12,
(extend Gamma x T11) |-- t12 \in T12 ->
Gamma |-- (tabs x T11 t12) \in (TArrow T11 T12)
| T_App : forall T1 T2 Gamma t1 t2,
Gamma |-- t1 \in (TArrow T1 T2) ->
Gamma |-- t2 \in T1 ->
Gamma |-- (tapp t1 t2) \in T2
(* nats *)
| T_Nat : forall Gamma n1,
Gamma |-- (tnat n1) \in TNat
| T_Succ : forall Gamma t1,
Gamma |-- t1 \in TNat ->
Gamma |-- (tsucc t1) \in TNat
| T_Pred : forall Gamma t1,
Gamma |-- t1 \in TNat ->
Gamma |-- (tpred t1) \in TNat
| T_Mult : forall Gamma t1 t2,
Gamma |-- t1 \in TNat ->
Gamma |-- t2 \in TNat ->
Gamma |-- (tmult t1 t2) \in TNat
| T_If0 : forall Gamma t1 t2 t3 T1,
Gamma |-- t1 \in TNat ->
Gamma |-- t2 \in T1 ->
Gamma |-- t3 \in T1 ->
Gamma |-- (tif0 t1 t2 t3) \in T1
(* pairs *)
| T_Pair : forall Gamma t1 t2 T1 T2,
Gamma |-- t1 \in T1 ->
Gamma |-- t2 \in T2 ->
Gamma |-- (tpair t1 t2) \in (TProd T1 T2)
| T_Fst : forall Gamma t T1 T2,
Gamma |-- t \in (TProd T1 T2) ->
Gamma |-- (tfst t) \in T1
| T_Snd : forall Gamma t T1 T2,
Gamma |-- t \in (TProd T1 T2) ->
Gamma |-- (tsnd t) \in T2
(* unit *)
| T_Unit : forall Gamma,
Gamma |-- tunit \in TUnit
(* let *)
| T_Let : forall Gamma x t1 t2 T1 T2,
Gamma |-- t1 \in T1 ->
(extend Gamma x T1) |-- t2 \in T2 ->
Gamma |-- tlet x t1 t2 \in T2
(* sums *)
| T_Inl : forall Gamma t1 T1 T2,
Gamma |-- t1 \in T1 ->
Gamma |-- (tinl T2 t1) \in (TSum T1 T2)
| T_Inr : forall Gamma t2 T1 T2,
Gamma |-- t2 \in T2 ->
Gamma |-- (tinr T1 t2) \in (TSum T1 T2)
| T_Case : forall Gamma t0 x1 T1 t1 x2 T2 t2 T,
Gamma |-- t0 \in (TSum T1 T2) ->
(extend Gamma x1 T1) |-- t1 \in T ->
(extend Gamma x2 T2) |-- t2 \in T ->
Gamma |-- (tcase t0 x1 t1 x2 t2) \in T
(* lists *)
| T_Nil : forall Gamma T,
Gamma |-- (tnil T) \in (TList T)
| T_Cons : forall Gamma t1 t2 T1,
Gamma |-- t1 \in T1 ->
Gamma |-- t2 \in (TList T1) ->
Gamma |-- (tcons t1 t2) \in (TList T1)
| T_Lcase : forall Gamma t1 T1 t2 x1 x2 t3 T2,
Gamma |-- t1 \in (TList T1) ->
Gamma |-- t2 \in T2 ->
(extend (extend Gamma x2 (TList T1)) x1 T1) |-- t3 \in T2 ->
Gamma |-- (tlcase t1 t2 x1 x2 t3) \in T2
(* fix *)
| T_Fix : forall Gamma t1 T1 T2,
Gamma |-- t1 \in TArrow (TArrow T1 T2) (TArrow T1 T2) ->
Gamma |-- tfix t1 \in TArrow T1 T2
where "Gamma '|--' t '\in' T" := (has_type Gamma t T).
Hint Constructors has_type.
Tactic Notation "has_type_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "T_Var" | Case_aux c "T_Abs" | Case_aux c "T_App"
| Case_aux c "T_Nat" | Case_aux c "T_Succ" | Case_aux c "T_Pred"
| Case_aux c "T_Mult" | Case_aux c "T_If0"
| Case_aux c "T_Pair" | Case_aux c "T_Fst" | Case_aux c "T_Snd"
| Case_aux c "T_Unit"
(* let *)
| Case_aux c "T_Let"
| Case_aux c "T_Inl" | Case_aux c "T_Inr" | Case_aux c "T_Case"
| Case_aux c "T_Nil" | Case_aux c "T_Cons" | Case_aux c "T_Lcase"
(* fix *)
| Case_aux c "T_Fix"
].
Hint Extern 2 (has_type _ (tapp _ _) _) =>
eapply T_App; auto.
Hint Extern 2 (has_type _ (tlcase _ _ _ _ _) _) =>
eapply T_Lcase; auto.
Hint Extern 2 (_ = _) => compute; reflexivity.
(**************
Tatic [normalize1] and [normalize]
***************)
Tactic Notation "print_goal" := match goal with |- ?x => idtac x end.
Tactic Notation "normalize1" :=
print_goal; eapply multi_step ; [ (eauto 10; fail) | (instantiate; simpl)].
Tactic Notation "normalize" :=
repeat normalize1;
apply multi_refl.
Lemma tsucc_compat: forall t t',
t ==>* t' ->
tsucc t ==>* tsucc t'.
Proof.
intros; induction H; eauto.
Qed.
(**************
Example Code for Exam Problems
***************)
(* Variables *)
Notation A := (Id 0).
Notation B := (Id 1).
Notation I := (Id 2).
Notation J := (Id 3).
Notation K := (Id 4).
Notation M := (Id 6).
Notation N := (Id 5).
Notation X := (Id 7).
Notation Y := (Id 8).
Notation Z := (Id 9).
Notation Plus := (Id 10).
Notation SUM := (Id 11).
(* Dead Code Elimination *)
Fixpoint optimize_dce (c: com) : com :=
match c with
| SKIP =>
SKIP
| i ::= a =>
match a with
| AId j => if eq_id_dec i j then SKIP else i ::= a
| _ => i ::= a
end
| c1 ;; c2 =>
(optimize_dce c1) ;; (optimize_dce c2)
| IFB b THEN c1 ELSE c2 FI =>
IFB b
THEN optimize_dce c1
ELSE optimize_dce c2
FI
| WHILE b DO c END =>
WHILE b DO
optimize_dce c
END
end.
(* Summation function *)
Fixpoint sum n :=
match n with
| 0 => 0
| S m => n + sum m
end.
(* Summation Program *)
Definition sum_com : com :=
SUM ::= ANum 0 ;;
WHILE BNot (BEq (AId N) (ANum 0)) DO
SUM ::= APlus (AId N) (AId SUM);;
N ::= AMinus (AId N) (ANum 1)
END.
Definition sum2_com : com :=
SUM ::= ANum 0 ;;
I ::= ANum 0 ;;
WHILE BNot (BEq (AId I) (AId N)) DO
I ::= APlus (ANum 1) (AId I) ;;
SUM ::= APlus (AId I) (AId SUM)
END.
(* foo Program *)
Definition tmfoo: tm :=
tabs X (TProd (TArrow TNat TNat) (TSum TUnit TNat)) (
tlet Y (tfst (tvar X)) (tlet Z (tsnd (tvar X)) (
tcase (tvar Z)
A (tvar Y)
B (tabs M TNat (tapp (tvar Y) (tmult (tvar M) (tvar B))))
))
).
(*=========== 3141592 ===========*)
(* Easy *)
(* Find the weakest precondition [WP] of [X := X+2] for postcondition [X < 8].
{{ WP }} X := Y*2 + 2 {{ X < 8 }}
Hint: use the lemma [eq_id].
*)
Definition WP : Assertion :=
FILL_IN_HERE.
(*=========== 3141592 [20] ===========*)
(* Easy *)
(*
Write an Imp program [sort_two] that sorts values in the variables 'X' and 'Y'.
In other words, [sort_two] should satisfy
{{ X = n /\ Y = m }}
sort_two
{{ X <= Y /\ ((X = n /\ Y = m) \/ (X = m /\ Y = n)) }}
*)
Definition sort_two : com :=
FILL_IN_HERE.
Example sort_two_ex1: forall st
(RUN: sort_two / update (update empty_state X 5) Y 3 || st),
st X = 3 /\ st Y = 5.
Proof.
exact FILL_IN_HERE.
(* If you defined [sort_two] correctly, the following code should work.*)
(*
intros.
repeat match goal with [H: ceval _ _ _ |- _] => rename H into _X; dependent destruction _X end.
auto.
*)
Qed.
Example sort_two_ex2: forall st
(RUN: sort_two / update (update empty_state X 2) Y 7 || st),
st X = 2 /\ st Y = 7.
Proof.
exact FILL_IN_HERE.
(*
intros.
repeat match goal with [H: ceval _ _ _ |- _] => rename H into _X; dependent destruction _X end.
auto.
*)
Qed.
(* Medium *)
(* Hint: use the following lemmas and the tactic [omega]. *)
Check ble_nat_true.
Check ble_nat_false.
Theorem sort_two_correct: forall n m,
{{ fun st => st X = n /\ st Y = m }}
sort_two
{{ fun st => st X <= st Y /\ ((st X = n /\ st Y = m) \/ (st X = m /\ st Y = n)) }}.
Proof.
exact FILL_IN_HERE.
Qed.
(*-- Check --*)
Check conj sort_two_ex1 sort_two_ex2:
(forall st
(RUN: sort_two / update (update empty_state X 5) Y 3 || st),
st X = 3 /\ st Y = 5)
/\
(forall st
(RUN: sort_two / update (update empty_state X 2) Y 7 || st),
st X = 2 /\ st Y = 7).
Check sort_two_correct: forall n m,
{{ fun st => st X = n /\ st Y = m }}
sort_two
{{ fun st => st X <= st Y /\ ((st X = n /\ st Y = m) \/ (st X = m /\ st Y = n)) }}.
(*=========== 3141592 ===========*)
(* Hard *)
(* Hint: use the lemma [Nat.sub_0_r] and the tactic [omega]. *)
Check Nat.sub_0_r.
Theorem sum_com_correct: forall n,
{{ fun st => st N = n}}
sum_com
{{ fun st => st SUM = sum n }}.
Proof.
exact FILL_IN_HERE.
Qed.
(*-- Check --*)
Check sum_com_correct: forall n,
{{ fun st => st N = n}}
sum_com
{{ fun st => st SUM = sum n }}.
(*=========== 3141592 ===========*)
(* Very Hard *)
(* Hint: use the tactic [omega]. *)
(* Hint: use the following lemmas *)
Check negb_true_iff.
Check negb_false_iff.
Check beq_nat_true.
Check beq_nat_false.
Theorem sum2_com_correct: forall n,
{{ fun st => st N = n}}
sum2_com
{{ fun st => st SUM = sum n }}.
Proof.
exact FILL_IN_HERE.
Qed.
(*-- Check --*)
Check sum2_com_correct: forall n,
{{ fun st => st N = n}}
sum2_com
{{ fun st => st SUM = sum n }}.
(*=========== 3141592 ===========*)
(* Medium *)
(* Hint:
Use [functional_extensionality].
*)
Theorem optimize_dce_correct: forall st st' c,
(c / st || st') -> (optimize_dce c / st || st').
Proof.
exact FILL_IN_HERE.
Qed.
(*-- Check --*)
Check optimize_dce_correct: forall st st' c,
(c / st || st') -> (optimize_dce c / st || st').
(*=========== 3141592 ===========*)
(* Easy *)
(* Write the type of the program [tmfoo] *)
Definition tmfooty : ty :=
FILL_IN_HERE.
Lemma tmfoo_type: empty |-- tmfoo \in tmfooty.
Proof.
exact FILL_IN_HERE.
(* unfold tmfoo, tmfooty; eauto 15. *)
Qed.
(*-- Check --*)
Check tmfoo_type: empty |-- tmfoo \in tmfooty.
(*=========== 3141592 ===========*)
(* Easy *)
(** Translate this informal recursive definition into one using [fix]:
<<
tmmultpair =
\X:Nat*Nat. mult (fst X) (fst X)
>>
*)
Definition tmmultpair : tm :=
FILL_IN_HERE.
Example tmmultpair_type: empty |-- tmmultpair \in TArrow (TProd TNat TNat) TNat.
Proof.
exact FILL_IN_HERE.
(* unfold tmmultpair; eauto 10. *)
Qed.
Example tmmultpair_ex1: tapp tmmultpair (tpair (tnat 2) (tnat 3)) ==>* tnat 6.
Proof.
exact FILL_IN_HERE.
(* unfold tmmultpair; normalize. *)
Qed.
Example tmmultpair_ex2: tapp tmmultpair (tpair (tnat 5) (tnat 8)) ==>* tnat 40.
Proof.
exact FILL_IN_HERE.
(* unfold tmmultpair; normalize. *)
Qed.
(*-- Check --*)
Check conj tmmultpair_type (conj tmmultpair_ex1 tmmultpair_ex2) :
empty |-- tmmultpair \in TArrow (TProd TNat TNat) TNat /\
tapp tmmultpair (tpair (tnat 2) (tnat 3)) ==>* tnat 6 /\
tapp tmmultpair (tpair (tnat 5) (tnat 8)) ==>* tnat 40.
(*=========== 3141592 [20] ===========*)
(* Medium *)
(** Translate this informal recursive definition into one using [fix]:
<<
tmplus =
\x:Nat. \y:Nat.
if x=0 then y