-
Notifications
You must be signed in to change notification settings - Fork 0
/
deepgrow_2d.py
95 lines (82 loc) · 3.25 KB
/
deepgrow_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Any, Dict, Optional, Union
import lib.infers
import lib.trainers
from monai.networks.nets import BasicUNet
from monailabel.interfaces.config import TaskConfig
from monailabel.interfaces.tasks.infer_v2 import InferTask
from monailabel.interfaces.tasks.train import TrainTask
from monailabel.utils.others.generic import download_file, strtobool
logger = logging.getLogger(__name__)
class Deepgrow2D(TaskConfig):
def init(self, name: str, model_dir: str, conf: Dict[str, str], planner: Any, **kwargs):
super().init(name, model_dir, conf, planner, **kwargs)
# Labels
self.labels = [
"spleen",
"right kidney",
"left kidney",
"liver",
"stomach",
"aorta",
"inferior vena cava",
]
# Model Files
self.path = [
os.path.join(self.model_dir, f"pretrained_{self.name}.pt"), # pretrained
os.path.join(self.model_dir, f"{self.name}.pt"), # published
]
# Download PreTrained Model
if strtobool(self.conf.get("use_pretrained_model", "true")):
url = f"{self.conf.get('pretrained_path', self.PRE_TRAINED_PATH)}/deepgrow_2d_bunet.pt"
download_file(url, self.path[0])
# Network
self.network = BasicUNet(
spatial_dims=2,
in_channels=3,
out_channels=1,
features=(32, 64, 128, 256, 512, 32),
)
def infer(self) -> Union[InferTask, Dict[str, InferTask]]:
task: InferTask = lib.infers.Deepgrow(
path=self.path,
network=self.network,
labels=self.labels,
preload=strtobool(self.conf.get("preload", "false")),
config={"cache_transforms": True, "cache_transforms_in_memory": True, "cache_transforms_ttl": 300},
)
return task
def trainer(self) -> Optional[TrainTask]:
output_dir = os.path.join(self.model_dir, self.name)
load_path = self.path[0] if os.path.exists(self.path[0]) else self.path[1]
task: TrainTask = lib.trainers.Deepgrow(
model_dir=output_dir,
network=self.network,
load_path=load_path,
publish_path=self.path[1],
description="Train 2D Deepgrow model",
dimension=2,
labels=self.labels,
roi_size=(256, 256),
model_size=(256, 256),
max_train_interactions=10,
max_val_interactions=5,
val_interval=5,
config={
"max_epochs": 10,
"train_batch_size": 16,
"val_batch_size": 16,
},
)
return task