-
Notifications
You must be signed in to change notification settings - Fork 0
/
segmentation.py
105 lines (90 loc) · 3.8 KB
/
segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Any, Dict, Optional, Union
import lib.infers
import lib.trainers
from monai.networks.nets import UNet
from monailabel.interfaces.config import TaskConfig
from monailabel.interfaces.tasks.infer_v2 import InferTask
from monailabel.interfaces.tasks.train import TrainTask
from monailabel.utils.others.generic import download_file, strtobool
logger = logging.getLogger(__name__)
class Segmentation(TaskConfig):
def init(self, name: str, model_dir: str, conf: Dict[str, str], planner: Any, **kwargs):
super().init(name, model_dir, conf, planner, **kwargs)
# Labels - DON'T INCLUDE BACKGROUND LABEL
self.labels = {
"spleen": 1,
"right kidney": 2,
"left kidney": 3,
"gallbladder": 4,
"esophagus": 5,
"liver": 6,
"stomach": 7,
"aorta": 8,
"inferior vena cava": 9,
"portal vein and splenic vein": 10,
"pancreas": 11,
"right adrenal gland": 12,
"left adrenal gland": 13,
}
# Number of input channels - 4 for BRATS and 1 for spleen
self.number_intensity_ch = 1
# Model Files
self.path = [
os.path.join(self.model_dir, f"pretrained_{name}.pt"), # pretrained
os.path.join(self.model_dir, f"{name}.pt"), # published
]
# Download PreTrained Model
if strtobool(self.conf.get("use_pretrained_model", "true")):
url = f"{self.conf.get('pretrained_path', self.PRE_TRAINED_PATH)}/segmentation_unet_multilabel.pt"
download_file(url, self.path[0])
self.target_spacing = (1.0, 1.0, 1.0) # target space for image
# Setting ROI size should consider max width, height and depth of the images
self.roi_size = (128, 128, 128) # sliding window size for train and infer
# Network
self.network = UNet(
spatial_dims=3,
in_channels=self.number_intensity_ch,
out_channels=len(self.labels.keys()) + 1, # All labels plus background
channels=[16, 32, 64, 128, 256],
strides=[2, 2, 2, 2],
num_res_units=2,
norm="batch",
)
def infer(self) -> Union[InferTask, Dict[str, InferTask]]:
task: InferTask = lib.infers.Segmentation(
path=self.path,
network=self.network,
roi_size=self.roi_size,
target_spacing=self.target_spacing,
labels=self.labels,
preload=strtobool(self.conf.get("preload", "false")),
config={"largest_cc": True},
)
return task
def trainer(self) -> Optional[TrainTask]:
output_dir = os.path.join(self.model_dir, self.name)
load_path = self.path[0] if os.path.exists(self.path[0]) else self.path[1]
task: TrainTask = lib.trainers.Segmentation(
model_dir=output_dir,
network=self.network,
roi_size=self.roi_size,
target_spacing=self.target_spacing,
load_path=load_path,
publish_path=self.path[1],
description="Train Multilabel Segmentation Model",
dimension=3,
labels=self.labels,
)
return task