-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPRS.py
171 lines (142 loc) · 4.03 KB
/
SPRS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Somefun, Oluwsasegun Ayokunle
# oasomefun@ieee.org
# EEE/CPE Dept. FUTA
# (c) 2018
#
# Number Theory Computing
# Recursive Patterns in Powers
# Integer Powers of any real number
# param n: base number, n
# param r: exponent number, r
# return: power, the result of the operation
import time
import sys
sys.setrecursionlimit(1500)
class SPRS:
def __init__(self, n, r=2):
# Memory Map
self.n = n
self.r = r
# self.mem_list = []
self.memo = {0: 1, 1: n}
# Somefun's Square Method
# The square of any positive or negative real number value can be generalized
# into these returned formula expression below, where n is that number
self.a = self.n - 1
self.c = 3 + (self.n - 2)
self.memo[2] = (self.a * self.c) + 1
# returns the power, the result of the recursive power series pattern
def valr(self):
memo = self.memo
r = self.r
if r not in memo:
def pp_series(k):
if k in memo:
return memo[k]
p = k - 1
memo[k] = pp_series(p) * memo[1]
# print('Memory Map:\n')
# for k in memo:
# print(k, '->', memo[k], end=' || ')
# print('\n')
return memo[k]
return pp_series(r)
else:
return memo[r]
# returns the power, the result of the recursive power series pattern
def valr2(self):
memo = self.memo
r = self.r
if r not in memo:
if r % 2 != 0:
p = int((r - 1) * 0.5)
memo[r] = memo[1]
for i in range(p):
memo[r] = memo[r] * memo[2]
if r % 2 == 0:
p = int(r * 0.5)
memo[r] = memo[2]
for i in range(p):
memo[r] = memo[r] * memo[2]
return memo[r]
# returns the power, the result of the sum of power series pattern
def vals(self):
memo = self.memo
r = self.r
a = self.a
if r not in memo:
p = r - 3 + 1
sums = 0
for j in range(p):
if j not in memo:
isums = 0
k = j - 3 + 1
for o in range(k):
isums += memo[o]
memo[j] = memo[2] * (1 + (a * isums))
sums += memo[j]
memo[r] = memo[2] * (1 + (a * sums))
return memo[r]
@property
# returns a map of the recursive power series, r of a number, n
def map_mem(self):
# print('Memory Map:\n')
# for k in self.memo:
# self.mem_list.append(self.memo[k])
return self.memo
if __name__ == '__main__':
#
ts = time.clock()
for index in range(64):
psr = SPRS(2, 7)
tf = time.clock()
tfs0 = (tf - ts) / 64
print('Time: ', tfs0, 'secs')
#
t = 100
##
psr1 = SPRS(2, 7)
print(psr1.valr())
print('algo1')
ts = time.clock()
for index in range(t):
SPRS(2, t).valr()
tf = time.clock()
tfs1 = (tf - ts) / t
print('Time: ', tfs1, 'secs')
print(psr1.memo)
##
psr2 = SPRS(2, 7)
print(psr2.valr2())
print('algo2')
ts = time.clock()
for index in range(t):
SPRS(2, t).valr2()
tf = time.clock()
tfs2 = (tf - ts) / t
print('Time: ', tfs2, 'secs')
print(psr2.memo)
##
psr3 = SPRS(2, 7)
print(psr3.vals())
print('algo3')
ts = time.clock()
for index in range(t):
SPRS(2, t).vals()
tf = time.clock()
tfs3 = (tf - ts) / t
print('Time: ', tfs3, 'secs')
print(psr3.memo)
#
print('inbuilt')
ts = time.clock()
for index in range(t):
psi = 2 ** t
tf = time.clock()
tfs4 = (tf - ts) / t
print('Time: ', tfs4, 'secs')
#
mintfs = min(tfs1, tfs2, tfs3)
print('Min:', mintfs)
relspeed = [tfs0/mintfs, tfs1/mintfs, tfs2/mintfs, tfs3/mintfs, mintfs/tfs4]
print(relspeed)