-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathpretraining.py
98 lines (91 loc) · 4.97 KB
/
pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
from torch import nn
from baselines.data_openml import data_prep_openml,task_dset_ids,DataSetCatCon
from torch.utils.data import DataLoader
import torch.optim as optim
from augmentations import embed_data_mask
from augmentations import add_noise
import os
import numpy as np
def SAINT_pretrain(model,cat_idxs,X_train,y_train,continuous_mean_std,opt,device):
train_ds = DataSetCatCon(X_train, y_train, cat_idxs,opt.dtask, continuous_mean_std)
trainloader = DataLoader(train_ds, batch_size=opt.batchsize, shuffle=True,num_workers=4)
vision_dset = opt.vision_dset
optimizer = optim.AdamW(model.parameters(),lr=0.0001)
pt_aug_dict = {
'noise_type' : opt.pt_aug,
'lambda' : opt.pt_aug_lam
}
criterion1 = nn.CrossEntropyLoss()
criterion2 = nn.MSELoss()
print("Pretraining begins!")
for epoch in range(opt.pretrain_epochs):
model.train()
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
optimizer.zero_grad()
x_categ, x_cont, _ ,cat_mask, con_mask = data[0].to(device), data[1].to(device),data[2].to(device),data[3].to(device),data[4].to(device)
# embed_data_mask function is used to embed both categorical and continuous data.
if 'cutmix' in opt.pt_aug:
from augmentations import add_noise
x_categ_corr, x_cont_corr = add_noise(x_categ,x_cont, noise_params = pt_aug_dict)
_ , x_categ_enc_2, x_cont_enc_2 = embed_data_mask(x_categ_corr, x_cont_corr, cat_mask, con_mask,model,vision_dset)
else:
_ , x_categ_enc_2, x_cont_enc_2 = embed_data_mask(x_categ, x_cont, cat_mask, con_mask,model,vision_dset)
_ , x_categ_enc, x_cont_enc = embed_data_mask(x_categ, x_cont, cat_mask, con_mask,model,vision_dset)
if 'mixup' in opt.pt_aug:
from augmentations import mixup_data
x_categ_enc_2, x_cont_enc_2 = mixup_data(x_categ_enc_2, x_cont_enc_2 , lam=opt.mixup_lam)
loss = 0
if 'contrastive' in opt.pt_tasks:
aug_features_1 = model.transformer(x_categ_enc, x_cont_enc)
aug_features_2 = model.transformer(x_categ_enc_2, x_cont_enc_2)
aug_features_1 = (aug_features_1 / aug_features_1.norm(dim=-1, keepdim=True)).flatten(1,2)
aug_features_2 = (aug_features_2 / aug_features_2.norm(dim=-1, keepdim=True)).flatten(1,2)
if opt.pt_projhead_style == 'diff':
aug_features_1 = model.pt_mlp(aug_features_1)
aug_features_2 = model.pt_mlp2(aug_features_2)
elif opt.pt_projhead_style == 'same':
aug_features_1 = model.pt_mlp(aug_features_1)
aug_features_2 = model.pt_mlp(aug_features_2)
else:
print('Not using projection head')
logits_per_aug1 = aug_features_1 @ aug_features_2.t()/opt.nce_temp
logits_per_aug2 = aug_features_2 @ aug_features_1.t()/opt.nce_temp
targets = torch.arange(logits_per_aug1.size(0)).to(logits_per_aug1.device)
loss_1 = criterion1(logits_per_aug1, targets)
loss_2 = criterion1(logits_per_aug2, targets)
loss = opt.lam0*(loss_1 + loss_2)/2
elif 'contrastive_sim' in opt.pt_tasks:
aug_features_1 = model.transformer(x_categ_enc, x_cont_enc)
aug_features_2 = model.transformer(x_categ_enc_2, x_cont_enc_2)
aug_features_1 = (aug_features_1 / aug_features_1.norm(dim=-1, keepdim=True)).flatten(1,2)
aug_features_2 = (aug_features_2 / aug_features_2.norm(dim=-1, keepdim=True)).flatten(1,2)
aug_features_1 = model.pt_mlp(aug_features_1)
aug_features_2 = model.pt_mlp2(aug_features_2)
c1 = aug_features_1 @ aug_features_2.t()
loss+= opt.lam1*torch.diagonal(-1*c1).add_(1).pow_(2).sum()
if 'denoising' in opt.pt_tasks:
cat_outs, con_outs = model(x_categ_enc_2, x_cont_enc_2)
# if con_outs.shape(-1) != 0:
# import ipdb; ipdb.set_trace()
if len(con_outs) > 0:
con_outs = torch.cat(con_outs,dim=1)
l2 = criterion2(con_outs, x_cont)
else:
l2 = 0
l1 = 0
# import ipdb; ipdb.set_trace()
n_cat = x_categ.shape[-1]
for j in range(1,n_cat):
l1+= criterion1(cat_outs[j],x_categ[:,j])
loss += opt.lam2*l1 + opt.lam3*l2
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f'Epoch: {epoch}, Running Loss: {running_loss}')
print('END OF PRETRAINING!')
return model
# if opt.active_log:
# wandb.log({'pt_epoch': epoch ,'pretrain_epoch_loss': running_loss
# })