-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_wgan_validator.py
989 lines (845 loc) · 36.8 KB
/
train_wgan_validator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
# only part gan uncond 3
# cond 6 [wg, gt/res]
# local + part
from __future__ import print_function, division
from opts import opt
from tensorboardX import SummaryWriter
import json
from termcolor import colored
import torch
import torch.nn as nn
import custom_transforms
import dataset
from torch.utils.data import Dataset, DataLoader
import models
from custom_utils import weight_init, create_orig_xy_map, Meter, make_face_region_batch, make_parts_region_batch, print_inter_grad, calc_gradient_penalty, debug_info, dotdict, calc_gradient_penalty_mnist
from custom_criterions import MaskedMSELoss, TVLoss, SymLoss, VggFaceLoss
import random
from os import path
from torchvision import transforms
import pdb
import time
from tqdm import tqdm
import torchvision.datasets as datasets
import numpy as np
import validator_models as v_models
if opt.hpc_version:
num = 4
torch.set_num_threads(num)
real_label = 1
fake_label = 0
def noisy_real_label():
return random.randint(7, 12) / 10
def noisy_fake_label():
return random.randint(0, 3) / 10
# 单独为 validator gan 设置的超参
config = {
'nz': 128, # size of the latent z vector
}
config = dotdict(config)
class Runner(object):
def __init__(self):
self.writer = SummaryWriter(path.join("tb_logs", opt.exp_name))
self.startup()
self.prepare_data()
self.prepare_model()
self.prepare_optim()
self.prepare_losses()
self.load_checkpoint()
def __del__(self):
self.writer.close()
def prepare_gan_pair_data(self, d, kind = 'global3'):
if kind == 'global3':
real = d['gt']
fake = d['res']
elif kind == 'global6':
real = torch.cat([d['w_gd'], d['gt']], 1)
fake = torch.cat([d['w_gd'], d['res']], 1)
elif kind == 'global9':
real = torch.cat([d['w_gd'], d['gd'], d['gt']], 1)
fake = torch.cat([d['w_gd'], d['gd'], d['res']], 1)
elif kind == 'local3':
real = make_face_region_batch(d['gt'], d['f_r'])
fake = make_face_region_batch(d['res'], d['f_r'])
elif kind == 'part3':
real = make_parts_region_batch(d['gt'], d['p_p'])
fake = make_parts_region_batch(d['res'], d['p_p'])
elif kind == 'part6':
# list len=4
# list[0] Tensor shape torch.Size([16, 3, 64, 64])
w_gd_parts = make_parts_region_batch(d['w_gd'], d['p_p'])
gt_parts = make_parts_region_batch(d['gt'], d['p_p'])
res_parts = make_parts_region_batch(d['res'], d['p_p'])
real = [torch.cat([w_gd_part, gt_part], 1) for w_gd_part, gt_part in zip(w_gd_parts, gt_parts)]
fake = [torch.cat([w_gd_part, res_part], 1) for w_gd_part, res_part in zip(w_gd_parts, res_parts)]
elif kind == 'LR':
gt_parts = make_parts_region_batch(d['gt'], d['p_p'])
res_parts = make_parts_region_batch(d['res'], d['p_p'])
real = torch.cat([gt_parts[0], gt_parts[1]], 1)
fake = torch.cat([res_parts[0], res_parts[1]], 1)
# pdb.set_trace()
return real, fake
def run(self):
global gen_iterations
gen_iterations = 0
for e in range(self.last_epoch + 1, opt.max_epoch):
self.change_model_mode(True)
self.reset_ms()
self.train_one_epoch(e)
# self.change_model_mode(False)
# self.reset_ms()
# self.test(e)
if (e + 1) % opt.save_epoch_freq == 0:
self.save_checkpoint(e)
print ()
def reset_ms(self):
for m in self.ms.values():
m.reset()
def train_G(self):
############################
# (2) Update G network
###########################
# to avoid computation
for netD in self.models[1:]:
for p in netD.parameters():
p.requires_grad = False
# global real, fake, local_real, local_fake, parts_real, parts_fake, LR_real, LR_fake, label
# gd, bl, gt, lm_mask, lm_gt, f_r, p_p = *self.pack
# locals().update(self.pack)
# pdb.set_trace()
# local_gt = make_face_region_batch(gt, f_r)
# print (gd.shape)
# pdb.set_trace()
'''
pt_l = opt.pt_l_w * self.point_crit(grid, lm_gt, lm_mask)
tv_l = opt.tv_l_w * self.tv_crit(grid - self.orig_xy_map)
sym_l = torch.Tensor([0]).to(device)
if opt.train_sym_dir:
sym_gd = sb['sym_r'].to(device)
sym_l = opt.sym_l_w * self.sym_crit(grid, sym_gd)
flow_l = pt_l + tv_l + sym_l
mse_l = opt.mse_l_w * self.mse_crit(res, gt)
perp_l = opt.perp_l_w * self.perp_crit(res, gt)
rec_l = perp_l + mse_l
# grid.register_hook(grid_grad_func)
# self.G.recNet.encoder[0].weight.register_hook(inter_grad_func)
if opt.debug:
res.register_hook(print_inter_grad("rec tensor grad"))
'''
output = self.D(fake)
if opt.use_WGAN:
err_G = output.mean()
else:
err_G = self.D_crit(output, label)
G_l = err_G
'''
# gan loss
## Global GAN
output = self.GD(fake)
if opt.use_WGAN:
errGD_G = output.mean()
else:
errGD_G = self.GD_crit(output, label)
GD_G_l = opt.gd_l_w * errGD_G
## Local GAN
output = self.LD(local_fake)
if opt.use_WGAN:
errLD_G = output.mean()
else:
errLD_G = self.LD_crit(output, label)
LD_G_l = opt.ld_l_w * errLD_G
## Part GAN
errsPD_G = []
for p in range(4):
output = self.PD[p](parts_fake[p])
if opt.use_WGAN:
errsPD_G.append(output.mean())
else:
errsPD_G.append(self.PD_crit[p](output, label))
PD_G_l = self.parts_l_w[0] * errsPD_G[0] + self.parts_l_w[1] * errsPD_G[1] + self.parts_l_w[2] * errsPD_G[2] + self.parts_l_w[3] * errsPD_G[3]
## LR GAN
output = self.LR(LR_fake)
if opt.use_WGAN:
errLR_G = output.mean()
else:
errLR_G = self.LR_crit(output, label)
LR_G_l = opt.lr_l_w * errLR_G
'''
adv_l = G_l
# adv_l = PD_G_l
# adv_l = GD_G_l + PD_G_l + LD_G_l + LR_G_l
# adv_l = GD_G_l + LD_G_l
# adv_l = GD_G_l
# adv_l = LD_G_l
# tot_l = flow_l + rec_l + adv_l
# tot_l = rec_l + adv_l
# tot_l = rec_l
tot_l = adv_l
self.G.zero_grad()
tot_l.backward()
self.optim.step()
# logging
# self.ms['pt'].add(pt_l.item())
# self.ms['tv'].add(tv_l.item())
# self.ms['sym'].add(sym_l.item())
# self.ms['tot'].add(tot_l.item())
# self.ms['mse'].add(mse_l.item())
# self.ms['perp'].add(perp_l.item())
# self.ms['GD_G'].add(GD_G_l.item())
# self.ms['LD_G'].add(LD_G_l.item())
# self.ms['PD_G'].add(PD_G_l.item())
# self.ms['LR_G'].add(LR_G_l.item())
self.ms['G'].add(G_l.item())
def train_Ds(self, end_flag):
############################
# (1) Update D network
###########################
global label
for netD in self.models[1:]:
for p in netD.parameters():
p.requires_grad = True
## D
### train with real
self.D.zero_grad()
output = self.D(real)
# pdb.set_trace()
if opt.use_WGAN:
err_D_real = output.mean()
else:
label = torch.full_like(label, noisy_real_label())
err_D_real = self.D_crit(output, label)
# pdb.set_trace()
err_D_real.backward()
### train with fake
output = self.D(fake.detach())
if opt.use_WGAN:
err_D_fake = output.mean() * (-1)
else:
label = torch.full_like(label, noisy_fake_label())
err_D_fake = self.D_crit(output, label)
err_D_fake.backward()
if opt.use_WGAN_GP:
# gp = calc_gradient_penalty(self.D, real.data, fake.data)
gp = calc_gradient_penalty_mnist(self.D, real.data, fake.data)
gp_l = opt.gp_lambda * gp
gp_l.backward()
if opt.use_WGAN:
# 注意这里是+, 因为errGD_D_fake本身就带有了-号
err_D = err_D_real + err_D_fake
wasserstein_dis = - err_D
if opt.use_WGAN_GP:
err_D += gp_l
else:
err_D = (err_D_real + err_D_fake) / 2
self.optimD.step()
'''
## GD
### train with real
self.GD.zero_grad()
output = self.GD(real)
# pdb.set_trace()
if opt.use_WGAN:
errGD_D_real = output.mean()
else:
label = torch.full_like(label, noisy_real_label())
errGD_D_real = self.GD_crit(output, label)
# pdb.set_trace()
errGD_D_real.backward()
### train with fake
output = self.GD(fake.detach())
if opt.use_WGAN:
errGD_D_fake = output.mean() * (-1)
else:
label = torch.full_like(label, noisy_fake_label())
errGD_D_fake = self.GD_crit(output, label)
errGD_D_fake.backward()
if opt.use_WGAN_GP:
gp = calc_gradient_penalty(self.GD, real.data, fake.data)
gp_l = opt.gp_lambda * gp
gp_l.backward()
if opt.use_WGAN:
# 注意这里是+, 因为errGD_D_fake本身就带有了-号
errGD_D = errGD_D_real + errGD_D_fake
wasserstein_dis_GD = - errGD_D
if opt.use_WGAN_GP:
errGD_D += gp_l
else:
errGD_D = (errGD_D_real + errGD_D_fake) / 2
self.optimGD.step()
## LD
self.LD.zero_grad()
output = self.LD(local_real)
if opt.use_WGAN:
errLD_D_real = output.mean()
else:
label = torch.full_like(label, noisy_real_label())
errLD_D_real = self.LD_crit(output, label)
errLD_D_real.backward()
output = self.LD(local_fake.detach())
if opt.use_WGAN:
errLD_D_fake = output.mean() * (-1)
else:
label = torch.full_like(label, noisy_fake_label())
errLD_D_fake = self.LD_crit(output, label)
errLD_D_fake.backward()
if opt.use_WGAN_GP:
gp = calc_gradient_penalty(self.LD, local_real.data, local_fake.data)
gp_l = opt.gp_lambda * gp
gp_l.backward()
if opt.use_WGAN:
errLD_D = errLD_D_real + errLD_D_fake
wasserstein_dis_LD = - errLD_D
if opt.use_WGAN_GP:
errLD_D += gp_l
else:
errLD_D = (errLD_D_real + errLD_D_fake) / 2
self.optimLD.step()
## PD
errsPD_D = []
dissPD_D = []
for p in range(4):
PD = self.PD[p]
optimPD = self.optimPD[p]
part_real = parts_real[p]
part_fake = parts_fake[p]
if not opt.use_WGAN:
PD_crit = self.PD_crit[p]
PD.zero_grad()
output = PD(part_real)
if opt.use_WGAN:
errPD_D_real = output.mean()
else:
label = torch.full_like(label, noisy_real_label())
errPD_D_real = PD_crit(output, label)
errPD_D_real.backward()
output = PD(part_fake.detach())
if opt.use_WGAN:
errPD_D_fake = output.mean() * (-1)
else:
label = torch.full_like(label, noisy_fake_label())
errPD_D_fake = PD_crit(output, label)
errPD_D_fake.backward()
if opt.use_WGAN_GP:
gp = calc_gradient_penalty(PD, part_real.data, part_fake.data)
gp_l = opt.gp_lambda * gp
gp_l.backward()
if opt.use_WGAN:
errPD_D = (errPD_D_real + errPD_D_fake)
dis_PD = - errPD_D
dissPD_D.append(dis_PD)
if opt.use_WGAN_GP:
errPD_D += gp_l
else:
errPD_D = (errPD_D_real + errPD_D_fake) / 2
errsPD_D.append(errPD_D)
optimPD.step()
PD_D_l = errsPD_D[0] + errsPD_D[1] + errsPD_D[2] + errsPD_D[3]
wasserstein_dis_PD = dissPD_D[0] + dissPD_D[1] + dissPD_D[2] + dissPD_D[3]
## LR
self.LR.zero_grad()
output = self.LR(LR_real)
if opt.use_WGAN:
errLR_D_real = output.mean()
else:
# label.fill_(real_label)
label = torch.full_like(label, noisy_real_label())
errLR_D_real = self.LR_crit(output, label)
errLR_D_real.backward()
output = self.LR(LR_fake.detach())
if opt.use_WGAN:
errLR_D_fake = output.mean() * (-1)
else:
# label.fill_(fake_label)
label = torch.full_like(label, noisy_fake_label())
errLR_D_fake = self.LR_crit(output, label)
errLR_D_fake.backward()
if opt.use_WGAN_GP:
gp = calc_gradient_penalty(self.LR, LR_real.data, LR_fake.data)
gp_l = opt.gp_lambda * gp
gp_l.backward()
if opt.use_WGAN:
errLR_D = (errLR_D_real + errLR_D_fake)
wasserstein_dis_LR = - errLR_D
if opt.use_WGAN_GP:
errLR_D += gp_l
else:
errLR_D = (errLR_D_real + errLR_D_fake) / 2
self.optimLR.step()
'''
if opt.use_WGAN and not opt.use_WGAN_GP:
debug_info ('Weight Clipping!')
for netD in self.models[1:]:
for p in netD.parameters():
p.data.clamp_(opt.clamp_lower, opt.clamp_upper)
# logging
if end_flag:
# self.ms['GD_D'].add(errGD_D.item())
# self.ms['LD_D'].add(errLD_D.item())
# for i, p in enumerate(['L', 'R', 'N', 'M']):
# self.ms['PD_D_%c' % p].add(errsPD_D[i].item())
# self.ms['PD_D'].add(PD_D_l.item())
# self.ms['LR_D'].add(errLR_D.item())
# self.ms['GD_dis'].add(wasserstein_dis_GD.item())
# self.ms['LD_dis'].add(wasserstein_dis_LD.item())
# self.ms['PD_dis'].add(wasserstein_dis_PD.item())
# self.ms['LR_dis'].add(wasserstein_dis_LR.item())
self.ms['D'].add(err_D.item())
self.ms['dis'].add(wasserstein_dis.item())
def prepare_all_gans_data(self):
# global real, fake, local_real, local_fake, parts_real, parts_fake, LR_real, LR_fake, label, w_gd, grid, res
global fake
fake = self.G(noise)
'''
w_gd, grid, res = self.G(bl, gd)
d = {
'gt': gt,
'res': res,
'w_gd': w_gd.detach(),
'gd': gd,
'f_r': f_r,
'p_p': p_p,
}
batch_size = bl.size(0)
label = torch.full((batch_size,), real_label, device=device)
real, fake = self.prepare_gan_pair_data(d, 'global%d' % opt.GD_cond)
local_real, local_fake = self.prepare_gan_pair_data(d, 'local3')
parts_real, parts_fake = self.prepare_gan_pair_data(d, 'part%d' % opt.PD_cond)
LR_real, LR_fake = self.prepare_gan_pair_data(d, 'LR')
'''
# one epoch train
def train_one_epoch(self, cur_e = 0):
global device, gen_iterations
device = self.device
# grid_grad_meter = Meter()
# grid_grad_func = print_inter_grad("grid grad", grid_grad_meter)
# inter_grad_meter = Meter()
# inter_grad_func = print_inter_grad("recNet encoder[0].weight grad", inter_grad_meter)
if opt.debug:
self.G.recNet.encoder[0].weight.register_hook(print_inter_grad("inter grad func"))
for i_b, sb in enumerate(self.train_dl):
# if i_b > 100:
# break
# pdb.set_trace()
# global gd, bl, gt, lm_mask, lm_gt, f_r, p_p
global real, noise
real, _ = sb
real = real.view(-1, 28*28).to(device)
noise = torch.randn(opt.batch_size, config.nz).to(device)
# gd = sb['guide'].to(device)
# bl = sb['blur'].to(device)
# gt = sb['gt'].to(device)
# lm_mask = sb['lm_mask'].to(device)
# lm_gt = sb['lm_gt'].to(device)
# f_r = sb['face_region_calc']
# p_p = sb['part_pos']
# self.pack = {
# 'gd': gd,
# 'bl': bl,
# 'gt': gt,
# # lm means landmark
# 'lm_mask': lm_mask,
# 'lm_gt': lm_gt,
# 'f_r': f_r,
# 'p_p': p_p
# }
if gen_iterations < 25 or gen_iterations % 500 == 0:
Diters = 100
else:
Diters = opt.Diters
range_obj = range(Diters)
if not opt.hpc_version:
range_obj = tqdm(range_obj)
pass
for iter_of_d in range_obj:
# for iter_of_d in tqdm(range(Diters)):
# for iter_of_d in range(Diters):
self.prepare_all_gans_data()
self.train_Ds(end_flag = (iter_of_d == Diters - 1))
# every update G one time, i_batch_tot inc 1
self.train_G()
gen_iterations += 1
self.i_batch_tot += 1
'''
# printing
if i_b % opt.print_freq == 0:
# print ('[%d] inter grad tensor grad scale is' % i_b, inter_grad_meter.mean)
print ('[Train]: %s [%d/%d] (%d/%d) <%d>\tPt Loss=%.12f\tTV Loss=%.12f\tSym Loss=%.12f\tMse Loss=%.12f\tPerp Loss=%.12f\tGD Loss: [%.12f/%.12f]\tLD Loss: [%.12f/%.12f]\tPD Loss: [%.12f/%.12f]\tLR Loss: [%.12f/%.12f]\tTot Loss=%.12f' % (
time.strftime("%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
i_b,
self.train_BNPE,
gen_iterations,
self.ms['pt'].mean,
self.ms['tv'].mean,
self.ms['sym'].mean,
self.ms['mse'].mean,
self.ms['perp'].mean,
self.ms['GD_G'].mean,
self.ms['GD_D'].mean,
self.ms['LD_G'].mean,
self.ms['LD_D'].mean,
self.ms['PD_G'].mean,
self.ms['PD_D'].mean,
self.ms['LR_G'].mean,
self.ms['LR_D'].mean,
self.ms['tot'].mean,
)
)
'''
if i_b % opt.print_freq == 0:
print ('[Train]: %s [%d/%d] (%d/%d) <%d>\tGAN Loss: [%.12f/%.12f]\tWasserstein Distance: %.12f' % (
time.strftime("%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
i_b,
self.train_BNPE,
gen_iterations,
self.ms['G'].mean,
self.ms['D'].mean,
self.ms['dis'].mean
)
)
# displaying
if self.i_batch_tot % opt.disp_freq == 0:
self.writer.add_image('train/real-fake', torch.cat([real.view(-1, 1, 28, 28)[:opt.disp_img_cnt], fake.view(-1, 1, 28, 28)[:opt.disp_img_cnt]], 2), self.i_batch_tot)
'''
self.writer.add_image('train/guide-gt-blur-warp-res-local_gt-local_res', torch.cat([gd[:opt.disp_img_cnt], gt[:opt.disp_img_cnt], bl[:opt.disp_img_cnt], w_gd[:opt.disp_img_cnt], res[:opt.disp_img_cnt], local_real[:opt.disp_img_cnt], local_fake[:opt.disp_img_cnt]], 2), self.i_batch_tot)
# self.writer.add_image('train/gt/parts/L-R-N-M', torch.cat([parts_real[0][:opt.disp_img_cnt], parts_real[1][:opt.disp_img_cnt], parts_real[2][:opt.disp_img_cnt], parts_real[3][:opt.disp_img_cnt]], 2), self.i_batch_tot)
self.writer.add_scalar('train/mse_loss', self.ms['mse'].mean, self.i_batch_tot)
self.writer.add_scalar('train/perp_loss', self.ms['perp'].mean, self.i_batch_tot)
self.writer.add_scalar('train/GD/G', self.ms['GD_G'].mean, self.i_batch_tot)
self.writer.add_scalar('train/GD/D', self.ms['GD_D'].mean, self.i_batch_tot)
self.writer.add_scalar('train/LD/G', self.ms['LD_G'].mean, self.i_batch_tot)
self.writer.add_scalar('train/LD/D', self.ms['LD_D'].mean, self.i_batch_tot)
self.writer.add_scalar('train/PD/G', self.ms['PD_G'].mean, self.i_batch_tot)
self.writer.add_scalar('train/PD/D', self.ms['PD_D'].mean, self.i_batch_tot)
self.writer.add_scalar('train/LR/G', self.ms['LR_G'].mean, self.i_batch_tot)
self.writer.add_scalar('train/LR/D', self.ms['LR_D'].mean, self.i_batch_tot)
self.writer.add_scalar('train/pt_loss', self.ms['pt'].mean, self.i_batch_tot)
self.writer.add_scalar('train/tv_loss', self.ms['tv'].mean, self.i_batch_tot)
self.writer.add_scalar('train/sym_loss', self.ms['sym'].mean, self.i_batch_tot)
# wasserstein distance
if opt.use_WGAN_GP:
self.writer.add_scalar('train/wasserstein_dis/GD', self.ms['GD_dis'].mean, self.i_batch_tot)
self.writer.add_scalar('train/wasserstein_dis/LD', self.ms['LD_dis'].mean, self.i_batch_tot)
self.writer.add_scalar('train/wasserstein_dis/PD', self.ms['PD_dis'].mean, self.i_batch_tot)
self.writer.add_scalar('train/wasserstein_dis/LR', self.ms['LR_dis'].mean, self.i_batch_tot)
'''
self.writer.add_scalar('train/G', self.ms['G'].mean, self.i_batch_tot)
self.writer.add_scalar('train/D', self.ms['D'].mean, self.i_batch_tot)
if opt.use_WGAN_GP:
self.writer.add_scalar('train/wasserstein_dis', self.ms['dis'].mean, self.i_batch_tot)
print ('*' * 30)
'''
print ('[Train]: %s [%d/%d]\tPt Loss=%.12f\tTV Loss=%.12f\tSym Loss=%.12f\tMse Loss=%.12f\tPerp Loss=%.12f\tGD Loss: [%.12f/%.12f]\tLD Loss: [%.12f/%.12f]\tPD Loss: [%.12f/%.12f]\tLR Loss: [%.12f/%.12f]\tTot Loss=%.12f' % (
time.strftime("%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
self.ms['pt'].mean,
self.ms['tv'].mean,
self.ms['sym'].mean,
self.ms['mse'].mean,
self.ms['perp'].mean,
self.ms['GD_G'].mean,
self.ms['GD_D'].mean,
self.ms['LD_G'].mean,
self.ms['LD_D'].mean,
self.ms['PD_G'].mean,
self.ms['PD_D'].mean,
self.ms['LR_G'].mean,
self.ms['LR_D'].mean,
self.ms['tot'].mean,
)
)
'''
print ('[Train]: %s [%d/%d]\tGAN Loss: [%.12f/%.12f]\tWasserstein Distance: %.12f' % (
time.strftime("%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
self.ms['G'].mean,
self.ms['D'].mean,
self.ms['dis'].mean
)
)
print ('*' * 30)
# self.writer.add_scalar('train/epoch/mse_loss', self.ms['mse'].mean, cur_e)
# self.writer.add_scalar('train/epoch/perp_loss', self.ms['perp'].mean, cur_e)
self.writer.add_scalar('train/epoch/G', self.ms['G'].mean, cur_e)
self.writer.add_scalar('train/epoch/D', self.ms['G'].mean, cur_e)
self.writer.add_scalar('train/epoch/wasserstein_dis', self.ms['dis'].mean, cur_e)
def test(self, cur_e = 0):
device = self.device
for i_b, sb in enumerate(self.test_dl):
with torch.no_grad():
gd = sb['guide'].to(device)
bl = sb['blur'].to(device)
gt = sb['gt'].to(device)
w_gd, grid, res = self.G(bl, gd)
pt_l = torch.Tensor([0]).to(device)
if opt.test_landmark_dir:
lm_mask = sb['lm_mask'].to(device)
lm_gt = sb['lm_gt'].to(device)
pt_l = opt.pt_l_w * self.point_crit(grid, lm_gt, lm_mask)
tv_l = opt.tv_l_w * self.tv_crit(grid - self.orig_xy_map)
sym_l = torch.Tensor([0]).to(device)
if opt.test_sym_dir:
sym_gd = sb['sym_r'].to(device)
sym_l = opt.sym_l_w * self.sym_crit(grid, sym_gd)
flow_l = pt_l + tv_l + sym_l
mse_l = opt.mse_l_w * self.mse_crit(res, gt)
perp_l = opt.perp_l_w * self.perp_crit(res, gt)
# rec_l = mse_l
rec_l = perp_l
tot_l = flow_l + rec_l
self.ms['pt'].add(pt_l.item())
self.ms['tv'].add(tv_l.item())
self.ms['sym'].add(sym_l.item())
self.ms['tot'].add(tot_l.item())
self.ms['mse'].add(mse_l.item())
self.ms['perp'].add(perp_l.item())
if i_b % opt.print_freq == 0:
print ('[Test]: %s [%d/%d] (%d/%d)\tPt Loss=%.12f\tTV Loss=%.12f\tSym Loss=%.12f\tMse Loss=%.12f\tPerp Loss=%.12f\tTot Loss=%.12f' % (
time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
i_b,
self.test_BNPE,
self.ms['pt'].mean,
self.ms['tv'].mean,
self.ms['sym'].mean,
self.ms['mse'].mean,
self.ms['perp'].mean,
self.ms['tot'].mean
)
)
self.writer.add_image('test/guide-gt-blur-warp-res', torch.cat([gd[:opt.disp_img_cnt], gt[:opt.disp_img_cnt], bl[:opt.disp_img_cnt], w_gd[:opt.disp_img_cnt], res[:opt.disp_img_cnt]], 2), self.i_batch_tot)
print ('=' * 30)
print ('[Test]: %s [%d/%d]\tPt Loss=%.12f\tTV Loss=%.12f\tSym Loss=%.12f\tMse Loss=%.12f\tPerp Loss=%.12f\tTot Loss=%.12f' % (
time.strftime("%m-%d %H:%M:%S", time.localtime()),
cur_e,
opt.max_epoch,
self.ms['pt'].mean,
self.ms['tv'].mean,
self.ms['sym'].mean,
self.ms['mse'].mean,
self.ms['perp'].mean,
self.ms['tot'].mean
)
)
print ('=' * 30)
self.writer.add_scalar('test/epoch/mse_loss', self.ms['mse'].mean, cur_e)
self.writer.add_scalar('test/epoch/perp_loss', self.ms['perp'].mean, cur_e)
def prepare_losses(self):
ms = {}
# keys = ['sym', 'pt', 'tv', 'mse', 'perp', 'tot', 'GD_G', 'GD_D', 'LD_G', 'LD_D', 'PD_G', 'PD_D', 'PD_D_L', 'PD_D_R', 'PD_D_N', 'PD_D_M', 'LR_G', 'LR_D', 'GD_dis', 'LD_dis', 'PD_dis', 'LR_dis']
keys = ['G', 'D', 'dis']
for key in keys:
ms[key] = Meter()
self.ms = ms
if opt.train_sym_dir:
self.sym_crit = SymLoss(opt.C)
self.point_crit = MaskedMSELoss()
self.tv_crit = TVLoss()
self.mse_crit = nn.MSELoss(reduction='sum')
self.perp_crit = VggFaceLoss(3)
self.perp_crit.to(self.device)
if not opt.use_WGAN:
# self.GD_crit = nn.BCELoss()
# self.LD_crit = nn.BCELoss()
# self.PD_crit = []
# for p in range(4):
# self.PD_crit.append(nn.BCELoss())
# self.LR_crit = nn.BCELoss()
self.D_crit = nn.BCELoss()
def load_checkpoint(self):
if not (opt.load_checkpoint or opt.load_warpnet):
return
if opt.load_checkpoint:
ckpt = torch.load(opt.load_checkpoint)
self.G.load_state_dict(ckpt['model'])
if 'model_GD' in ckpt:
# self.GD.load_state_dict(ckpt['model_GD'])
pass
if 'model_LD' in ckpt:
# print ('model_LD!!')
# self.LD.load_state_dict(ckpt['model_LD'])
pass
if 'model_PD_L' in ckpt:
for i, p in enumerate(['L', 'R', 'N', 'M']):
# self.PD[i].load_state_dict(ckpt['model_PD_%c' % p])
pass
# self.optim.load_state_dict(ckpt['optim'])
if 'optim_GD' in ckpt:
# self.optimGD.load_state_dict(ckpt['optim_GD'])
pass
if 'optim_LD' in ckpt:
# print ('optim_LD!!')
# self.optimLD.load_state_dict(ckpt['optim_LD'])
pass
if 'optim_PD_L' in ckpt:
for i, p in enumerate(['L', 'R', 'N', 'M']):
# self.optimPD[i].load_state_dict(ckpt['optim_PD_%c' % p])
pass
self.last_epoch = ckpt['epoch']
self.i_batch_tot = ckpt['i_batch_tot']
print ('Cont Train from Epoch %2d' % (self.last_epoch + 1))
if opt.load_warpnet:
ckpt = torch.load(opt.load_warpnet)
self.G.warpNet.load_state_dict(ckpt['model'])
print ('Load Pretrained Warpnet from %s' % (opt.load_warpnet))
def save_checkpoint(self, cur_e = 0):
ckpt_file = path.join(opt.checkpoint_dir, 'ckpt_%03d.pt' % (cur_e + 1))
print ('Save Model to %s ... ' % ckpt_file)
ckpt_dict = {
'epoch': cur_e,
'i_batch_tot': self.i_batch_tot,
'model': self.G.state_dict(),
'model_GD': self.GD.state_dict(),
'model_LD': self.LD.state_dict(),
'optim': self.optim.state_dict(),
'optim_GD': self.optimGD.state_dict(),
'optim_LD': self.optimLD.state_dict(),
}
for i, p in enumerate(['L', 'R', 'N', 'M']):
ckpt_dict['model_PD_%c' % p] = self.PD[i].state_dict()
ckpt_dict['optim_PD_%c' % p] = self.optimPD[i].state_dict()
torch.save(ckpt_dict, ckpt_file)
def change_model_mode(self, train = True):
if train:
for m in self.models:
m.train()
else:
for m in self.models:
m.eval()
def prepare_optim(self):
if opt.adam:
# print ('Enable adam!')
betas = (opt.beta1, 0.999)
self.optim = torch.optim.Adam(self.G.parameters(), lr = opt.lr, betas = betas)
self.optimD = torch.optim.Adam(self.D.parameters(), lr = opt.lr, betas = betas)
# self.optim = torch.optim.Adam(
# [
# { 'params': self.G.warpNet.parameters(), 'lr': opt.lr * 0.001 },
# { 'params': self.G.recNet.parameters() }
# ],
# lr = opt.lr,
# betas = betas
# )
# self.optimGD = torch.optim.Adam(self.GD.parameters(), lr = opt.lr, betas = betas)
# self.optimLD = torch.optim.Adam(self.LD.parameters(), lr = opt.lr, betas = betas)
# self.optimPD = []
# for p in range(4):
# self.optimPD.append(torch.optim.Adam(self.PD[p].parameters(), lr = opt.lr, betas = betas))
# self.optimLR = torch.optim.Adam(self.LR.parameters(), lr = opt.lr, betas = betas)
else: # RMSProp
# print ('Enable RMSProp!')
self.optim = torch.optim.RMSprop(self.G.parameters(), lr = opt.lr)
self.optimD = torch.optim.RMSprop(self.D.parameters(), lr = opt.lr)
# self.optim = torch.optim.RMSprop(
# [
# { 'params': self.G.warpNet.parameters(), 'lr': opt.lr * 0.001 },
# { 'params': self.G.recNet.parameters() }
# ],
# lr = opt.lr,
# # betas = betas
# )
# self.optimGD = torch.optim.RMSprop(self.GD.parameters(), lr = opt.lr)
# self.optimLD = torch.optim.RMSprop(self.LD.parameters(), lr = opt.lr)
# self.optimPD = []
# for p in range(4):
# self.optimPD.append(torch.optim.RMSprop(self.PD[p].parameters(), lr = opt.lr))
# self.optimLR = torch.optim.RMSprop(self.LR.parameters(), lr = opt.lr)
def prepare_model(self):
device = self.device
self.G = v_models.MNIST_Generator()
# self.G = models.GFRNet_generator()
self.G.to(device)
self.G.apply(weight_init)
self.D = v_models.MNIST_Discriminator()
self.D.to(device)
self.D.apply(weight_init)
# # 3 uncond
# # 6 [w_gd, res/gt]
# # 9 [w_gd, gd, res/gt]
# self.GD = models.GFRNet_globalDiscriminator(opt.GD_cond)
# self.GD.to(device)
# self.GD.apply(weight_init)
# self.LD = models.GFRNet_localDiscriminator(3)
# self.LD.to(device)
# self.LD.apply(weight_init)
# # part Ds
# # [L, R, N, M]
# # cond
# # 3 uncond
# # 6 [w_gd, res/gt]
# self.PD = []
# for p in range(4):
# self.PD.append(models.GFRNet_partDiscriminator(opt.PD_cond))
# for pd in self.PD:
# pd.to(device)
# pd.apply(weight_init)
# # [L, R]
# self.LR = models.GFRNet_partDiscriminator(6)
# self.LR.to(device)
# self.LR.apply(weight_init)
# self.models = [self.G, self.GD, self.LD, *self.PD, self.LR]
self.models = [self.G, self.D]
def prepare_data(self):
mnist_trainset = datasets.MNIST(root='./playground/validator_data/mnist', train=True, download=False, transform=transforms.Compose([
transforms.ToTensor()
]))
# a = np.array(mnist_trainset[0][0])
# pdb.set_trace()
# train_degradation_tsfm = custom_transforms.DegradationModel(opt.kind, opt.jpeg_last)
# test_degradation_tsfm = custom_transforms.DegradationModel(opt.kind, opt.jpeg_last)
# train_degradation_tsfm = custom_transforms.DegradationModel("train degradation")
# test_degradation_tsfm = custom_transforms.DegradationModel("test degradation")
# to_tensor_tsfm = custom_transforms.ToTensor()
# train_tsfms = [
# train_degradation_tsfm,
# to_tensor_tsfm
# ]
# test_tsfms = [
# test_degradation_tsfm,
# to_tensor_tsfm
# ]
# train_tsfm_c = transforms.Compose(train_tsfms)
# test_tsfm_c = transforms.Compose(test_tsfms)
# self.train_dataset = dataset.FaceDataset(opt.train_img_dir, opt.train_landmark_dir, opt.train_sym_dir, opt.train_mask_dir, opt.face_masks_dir, opt.flip_prob, train_tsfm_c, False)
self.train_dataset = mnist_trainset
self.train_dl = DataLoader(self.train_dataset, batch_size = opt.batch_size, shuffle = True, num_workers = opt.num_workers)
self.train_BNPE = len(self.train_dl)
# self.test_dataset = dataset.FaceDataset(opt.test_img_dir, opt.test_landmark_dir, opt.test_sym_dir, opt.test_mask_dir, opt.face_masks_dir, -1, test_tsfm_c, True)
# self.test_dl = DataLoader(self.test_dataset, batch_size = opt.batch_size, shuffle = False, num_workers = opt.num_workers)
# self.test_BNPE = len(self.test_dl)
def startup(self):
# random seed
if opt.manual_seed is None:
opt.manual_seed = random.randint(1, 10000)
print("Random Seed: ", opt.manual_seed)
random.seed(opt.manual_seed)
torch.manual_seed(opt.manual_seed)
# device
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
self.device = torch.device("cuda:0" if torch.cuda.is_available() and opt.cuda else "cpu")
print ('Use device: %s' % self.device)
# save_configs
configs = json.dumps(vars(opt), indent=2)
print (colored(configs, 'green'))
self.writer.add_text('Configs', configs, 0)
opts_json_path = path.join(opt.checkpoint_dir, 'opts.json')
with open(opts_json_path, 'w') as f:
print ('Save Opts to %s' % opts_json_path)
f.write(configs)
# aux vars
self.last_epoch = -1
self.i_batch_tot = 0
self.orig_xy_map = create_orig_xy_map().to(self.device)
self.parts_l_w = [opt.pd_L_l_w, opt.pd_R_l_w, opt.pd_N_l_w, opt.pd_M_l_w]
# if opt.use_WGAN:
# self.one = torch.FloatTensor([1]).to(self.device)
# self.mone = (one * -1).to(self.device)
runner = Runner()
runner.run()