-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_result.R
70 lines (61 loc) · 3.38 KB
/
main_result.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
library(readxl)
library(dplyr)
library(augsynth)
#setwd("D:/Personal File/??????ů/code")
startdate<-c("2014-05-01","2015-05-01","2016-05-01","2017-05-01","2018-05-01","2019-05-01","2020-05-01","2021-05-01")
enddate<-c("2015-04-30","2016-04-30","2017-04-30","2018-04-30","2019-04-30","2020-04-30","2021-04-30","2021-12-31")
intervention<-c("10-23")
yearlist<-c("2014","2015","2016","2017","2018","2019","2020","2021")
treatmentlist<-c("2+26 cities","Other northern cities","Alternative","Northern","South mixing","Southern","Southern control","China")
pollut<-c("SO2wn","NO2wn","PM2.5wn","PM10wn","O3_8hwn","COwn","SO2","NO2","PM2.5","PM10","O3_8h","CO","O3","O3wn","Ox","Oxwn")
test1 <- read_excel("RegionAverageAll.xlsx",
col_types = c("date", "text", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric", "numeric",
"numeric", "numeric", "numeric", "numeric", "numeric"))
data_exp <- NULL
for (n in 1:length(startdate)){
s_date<-startdate[n]
e_date<-enddate[n]
#it_date_<-intervention[n]
test2 <- test1 %>% filter(date>=s_date & date <= e_date)
year_s<-yearlist[n]
for (m in 1:length(treatmentlist)){
treat<-treatmentlist[m]
test3 <- test2 %>%
filter(test2$ID == treat |
test2$ID == "Dongguan"| test2$ID == "Zhongshan" |test2$ID == "Foshan"| test2$ID == "Beihai"|
test2$ID == "Nanning"| test2$ID=="Nanchang" | test2$ID == "Xiamen"| test2$ID == "Taizhou"|
test2$ID == "Ningbo"| test2$ID=="Guangzhou" | test2$ID == "Huizhou"| test2$ID == "Hangzhou" |
test2$ID == "Liuzhou"| test2$ID == "Shantou"| test2$ID == "Jiangmen"| test2$ID == "Heyuan"| test2$ID == "Quanzhou"| test2$ID=="Haikou" | test2$ID == "Shenzhen"| test2$ID == "Wenzhou"| test2$ID == "Huzhou"|
test2$ID == "Zhuhai"| test2$ID == "Fuzhou"| test2$ID == "Shaoxing"| test2$ID == "Zhaoqing"| test2$ID=="Zhoushan" |
test2$ID == "Quzhou"| test2$ID == "Jinhua"|test2$ID == "Shaoguan" | test2$ID == "Sanya"|
test2$ID == "Jieyang" |test2$ID == "Meizhou"| test2$ID == "Shanwei" |
test2$ID == "Zhanjiang" |test2$ID == "Chaozhou"| test2$ID == "Maoming" |test2$ID == "Yangjiang")
it_day<-intervention[1]
it_date<-paste(year_s,"-",it_day,sep='')
test3$treatment <- "0"
test3$treatment[test3$date>=it_date & test3$ID == treat]<-1
for (p in 1:length(pollut)){
y<-pollut[p]
#pol_name<-paste(y)
HBobs<- augsynth(y ~ treatment, ID, date, test3, progfunc="Ridge", scm=T)
print(paste("end of augsyth",treat,y))
summ=summary(HBobs,inf_type = "jackknife+")
Pol<-summ$att %>% rename(date= Time)
Pol$city<-treat
Pol$pollutant<-y
Pol$year <- year_s
Pol$average_att <- summ$average_att$Estimate
Pol$average_att_lower <- summ$average_att$lower_bound
Pol$average_att_upper <- summ$average_att$upper_bound
Pol$L2 <- summ$l2_imbalance
Pol$Scaled_L2 <- summ$scaled_l2_imbalance
Pol$est_bias<- format(round(mean(summ$bias_est), 3),nsmall=3)
Pol$improvement<- format(round(1 - summ$scaled_l2_imbalance,3)*100)
data_exp<-rbind(data_exp,Pol)
}
}
}
write.csv(data_exp,"main_result.csv",row.names = FALSE)