Skip to content

songyangme/STNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STNN

This is the PyTorch implementation of paper "Space Meets Time: Local Spacetime Neural Network For Traffic Flow Forecasting".

Installation

pip install -r requirements.txt

Requirements

  • pytorch (1.7 or later)
  • numpy
  • prettytable
  • tqdm

Train

Before train, unzip dataset to data/METR-LA, data/PeMS-Bay

# Train on PeMS-Bay
python train.py --data data/PeMS-Bay --t_history 12 --t_pred 12 --keep_ratio 0.2

Test

This single model can be used in both METR-LA and PeMS-Bay traffic prediction

python test.py --data data/METR-LA --model weights/STNN-combined.state.pt
python test.py --data data/PeMS-Bay --model weights/STNN-combined.state.pt

Citation

@article{yang2021space,
  title={Space Meets Time: Local Spacetime Neural Network For Traffic Flow Forecasting},
  author={Yang, Song and Liu, Jiamou and Zhao, Kaiqi},
  journal={arXiv preprint arXiv:2109.05225},
  year={2021}
}

Releases

No releases published

Packages

No packages published

Languages