This is the PyTorch implementation of paper "Space Meets Time: Local Spacetime Neural Network For Traffic Flow Forecasting".
pip install -r requirements.txt
- pytorch (1.7 or later)
- numpy
- prettytable
- tqdm
Before train, unzip dataset to data/METR-LA
, data/PeMS-Bay
# Train on PeMS-Bay
python train.py --data data/PeMS-Bay --t_history 12 --t_pred 12 --keep_ratio 0.2
This single model can be used in both METR-LA and PeMS-Bay traffic prediction
python test.py --data data/METR-LA --model weights/STNN-combined.state.pt
python test.py --data data/PeMS-Bay --model weights/STNN-combined.state.pt
@article{yang2021space,
title={Space Meets Time: Local Spacetime Neural Network For Traffic Flow Forecasting},
author={Yang, Song and Liu, Jiamou and Zhao, Kaiqi},
journal={arXiv preprint arXiv:2109.05225},
year={2021}
}