-
Notifications
You must be signed in to change notification settings - Fork 10
/
cvGaussMle.m
46 lines (45 loc) · 1.68 KB
/
cvGaussMle.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
function [Mu, Sigma] = cvGaussMle(X, bias)
% cvGaussMle - (Obsolete) Maximum Likelihood Parameter Estimation of Unimodal Gaussian Model
%
% Synopsis
% [Mu, Sigma] = cvGaussMle(X, [bias])
%
% Description
% This is a obsolete function. Use cvMeanCov.m.
%
% Inputs ([]s are optional)
% (matrix) X D x N matrix representing column training vectors
% where D is the number of dimensions and N is the
% number of vectors.
% (string) [bias = 'unbiased']
% 'biased' covariance or 'unbiased' covariance.
%
% Outputs ([]s are optional)
% (vector) Mu D x 1 vector containing estimated means
% (matrix) Sigma D x D matrix containing covariance matrix
% Note that for D = 1 (univariate) also, sigma^2 is
% returned.
%
% See also
% cvGmmEm (Parameter Estimation for Multimodal Gaussian using EM)
% mle (statistics toolbox)
% References
% [1] R. O. Duda, P. E. Hart, and D. G. Stork, "Chapter 2. Bayes
% Decision Theory," Pattern Classification, John Wiley & Sons, 2nd ed.,
% 2001.
%
% Authors
% Naotoshi Seo <sonots(at)sonots.com>
%
% License
% The program is free to use for non-commercial academic purposes,
% but for course works, you must understand what is going inside to use.
% The program can be used, modified, or re-distributed for any purposes
% if you or one of your group understand codes (the one must come to
% court if court cases occur.) Please contact the authors if you are
% interested in using the program without meeting the above conditions.
%
% Changes
% 11/01/2007 First Edition
if ~exist('bias', 'var'), bias = []; end
[Mu, Sigma] = cvMeanCov(X, bias);