-
Notifications
You must be signed in to change notification settings - Fork 10
/
cvLdaInvProj.m
49 lines (48 loc) · 1.68 KB
/
cvLdaInvProj.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
function [X] = cvLdaInvProj(Y, W)
% cvLdaInvProj - Inverse LDA Projection
%
% Synopsis
% [X] = cvLdaInvProj(Y, W)
%
% Description
% Fisher's Linear Discriminant Analysis (FLDA or LDA) [1] (118)
%
% Inputs ([]s are optional)
% (matrix) Y M x N matrix representing the projected data
% (matrix) W D x M matrix representing the LDA components (vectors)
% where M is the number of components.
%
% Outputs ([]s are optional)
% (matrix) X D x N matrix representing feature vectors by columns
% where D is the number of dimensions and N is the
% number of vectors.
%
% Examples
% See demo/cvLdaDemo.m
%
% See also
% cvLda, cvLdaProj
% References
% [1] R. O. Duda, P. E. Hart, and D. G. Stork, "Chapter 3.8.2. Fisher's
% Linear Discriminant Analysis," Pattern Classification,
% John Wiley & Sons, 2nd ed., 2001.
% [2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces
% vs. fisherfaces: recognition using class specific linear projection,”
% IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
% no. 7, pp. 711-720, July 1997.
%
% Authors
% Naotoshi Seo <sonots(at)sonots.com>
%
% License
% The program is free to use for non-commercial academic purposes,
% but for course works, you must understand what is going inside to use.
% The program can be used, modified, or re-distributed for any purposes
% if you or one of your group understand codes (the one must come to
% court if court cases occur.) Please contact the authors if you are
% interested in using the program without meeting the above conditions.
%
% Changes
% 12/01/2007 First Edition
X = W * Y;
end