-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodule.py
157 lines (124 loc) · 5.59 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import tensorflow as tf
import numpy as np
import hyperparams as hp
def lrelu(x, leak=0.2):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
output = f1 * x + f2 * abs(x)
return output
def conv2d(tensor,
output_dim,
filter_height=hp.filter_height,
filter_width=hp.filter_width,
stride=hp.stride,
activation_fn=tf.nn.relu,
norm_fn=tf.contrib.layers.batch_norm,
initializer=tf.truncated_normal_initializer(stddev=0.02),
scope="name",
reflect=False,
keep_prob=hp.keep_prob):
with tf.variable_scope(scope):
if reflect:
tensor = tf.pad(tensor, [[0, 0], [1, 1], [1, 1], [0, 0]])
tensor_shape = tensor.get_shape().as_list()
filter = tf.get_variable('filter', [filter_height, filter_width, tensor_shape[-1], output_dim], initializer=initializer)
conv = tf.nn.conv2d(tensor, filter, strides=[1, stride, stride, 1], padding='VALID')
if norm_fn is None:
bn = conv
else:
bn = tf.contrib.layers.batch_norm(conv)
bn = tf.nn.dropout(bn, keep_prob=keep_prob)
if activation_fn is not None:
output = activation_fn(bn)
else:
output = bn
return output
else:
tensor_shape = tensor.get_shape().as_list()
filter = tf.get_variable('filters', [filter_height, filter_width, tensor_shape[-1], output_dim], initializer=initializer)
conv = tf.nn.conv2d(tensor, filter, strides=[1, stride, stride, 1], padding='SAME')
if norm_fn is None:
bn = conv
else:
bn = tf.contrib.layers.batch_norm(conv)
bn = tf.nn.dropout(bn, keep_prob=keep_prob)
if activation_fn is not None:
output = activation_fn(bn)
else:
output = bn
return output
def deconv2d(tensor, output_dim, filter_height=hp.filter_height, filter_width=hp.filter_width, scope="name"): # fractional-strided conv layer
with tf.variable_scope(scope):
output_shape = [tf.shape(tensor)[0]] + output_dim
filter = tf.get_variable('filters', [filter_height, filter_width, output_shape[-1], tensor.get_shape()[-1].value])
deconv = tf.nn.conv2d_transpose(tensor, filter, output_shape=output_shape, strides=[1, 2, 2, 1], padding='SAME')
bn = tf.contrib.layers.batch_norm(tf.reshape(deconv, output_shape))
output = tf.nn.relu(bn)
return output
def encoder(tensor, scope="encoder"):
with tf.variable_scope(scope):
memory = []
for i, out_dim in enumerate(hp.encoder_hp):
if i == 0:
tensor = conv2d(tensor, output_dim=out_dim, activation_fn=lrelu, norm_fn=None, scope="enc_%d" % i)
else:
tensor = conv2d(tensor, output_dim=out_dim, activation_fn=lrelu, scope="enc_%d" % i)
memory.append(tensor)
return tensor, memory
def decoder(tensor, memory, scope="decoder"):
with tf.variable_scope(scope):
for i, out_dim in enumerate(hp.decoder_hp):
if i == 0:
tensor = deconv2d(tensor, output_dim=out_dim, scope="dec_%d" % i)
else:
tensor = tf.concat([memory[-i-1], tensor], axis=-1)
tensor = deconv2d(tensor, output_dim=out_dim, scope="dec_%d" % i)
return tensor
def generator(tensor, scope="generator"):
with tf.variable_scope(scope):
encoded, memory = encoder(tensor)
decoded = decoder(encoded, memory)
return decoded
def discriminator(tensor, reuse=False, scope="discriminator"):
with tf.variable_scope(scope, reuse=reuse):
for i, out_dim in enumerate(hp.disc_hp):
if i == 0:
tensor = conv2d(tensor,
output_dim=out_dim,
activation_fn=lrelu,
norm_fn=None,
filter_height=hp.disc_filter_height,
filter_width=hp.disc_filter_width,
scope="disc_%d" % i)
else:
if i != len(hp.disc_hp) - 1:
tensor = conv2d(tensor,
output_dim=out_dim,
filter_height=hp.disc_filter_height,
filter_width=hp.disc_filter_width,
activation_fn=lrelu,
scope="disc_%d" % i)
else:
tensor = conv2d(tensor,
output_dim=out_dim,
filter_height=3,
filter_width=3,
activation_fn=lrelu,
stride=1,
scope="disc_%d" % i)
tensor = conv2d(tensor,
output_dim=1,
filter_height=3,
filter_width=3,
stride=1,
activation_fn=None,
scope="output_disc")
return tensor
def dataset_shuffling(x, y):
shuffled_idx = np.arange(len(y))
np.random.shuffle(shuffled_idx)
return x[shuffled_idx, :], y[shuffled_idx, :]
def get_batch(x, y, curr_index, batch_size):
batch_x = x[curr_index * batch_size: (curr_index+1)*batch_size]
batch_y = y[curr_index * batch_size: (curr_index+1)*batch_size]
return batch_x, batch_y