-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_advCL.py
311 lines (251 loc) · 10.2 KB
/
utils_advCL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
import torch.nn as nn
import os
import time
import numpy as np
import random
import copy
from pdb import set_trace
from collections import OrderedDict
def normalize_fn(tensor, mean, std):
"""Differentiable version of torchvision.functional.normalize"""
# here we assume the color channel is in at dim=1
mean = mean[None, :, None, None]
std = std[None, :, None, None]
return tensor.sub(mean).div(std)
class NormalizeByChannelMeanStd(nn.Module):
def __init__(self, mean, std):
super(NormalizeByChannelMeanStd, self).__init__()
if not isinstance(mean, torch.Tensor):
mean = torch.tensor(mean)
if not isinstance(std, torch.Tensor):
std = torch.tensor(std)
self.register_buffer("mean", mean)
self.register_buffer("std", std)
def forward(self, tensor):
return normalize_fn(tensor, self.mean, self.std)
def extra_repr(self):
return 'mean={}, std={}'.format(self.mean, self.std)
def pgd_attack(model, images, labels, device, eps=8. / 255., alpha=2. / 255., iters=20, advFlag=None, forceEval=True, randomInit=True):
# images = images.to(device)
# labels = labels.to(device)
loss = nn.CrossEntropyLoss()
# init
if randomInit:
delta = torch.rand_like(images) * eps * 2 - eps
else:
delta = torch.zeros_like(images)
delta = torch.nn.Parameter(delta, requires_grad=True)
for i in range(iters):
if advFlag is None:
if forceEval:
model.eval()
outputs = model(images + delta)
else:
if forceEval:
model.eval()
outputs = model(images + delta, advFlag)
model.zero_grad()
cost = loss(outputs, labels)
# cost.backward()
delta_grad = torch.autograd.grad(cost, [delta])[0]
delta.data = delta.data + alpha * delta_grad.sign()
delta.grad = None
delta.data = torch.clamp(delta.data, min=-eps, max=eps)
delta.data = torch.clamp(images + delta.data, min=0, max=1) - images
model.zero_grad()
return (images + delta).detach()
def eval_adv_test(model, device, test_loader, epsilon, alpha, criterion, log, attack_iter=40):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# fix random seed for testing
torch.manual_seed(1)
model.eval()
end = time.time()
for i, (input, target) in enumerate(test_loader):
input, target = input.to(device), target.to(device)
input_adv = pgd_attack(model, input, target, device, eps=epsilon, iters=attack_iter, alpha=alpha).data
# compute output
output = model.eval()(input_adv)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, = accuracy(output.data, target, topk=(1,))
top1.update(prec1, input.size(0))
losses.update(loss.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
if (i % 10 == 0) or (i == len(test_loader) - 1):
log.info(
'Test: [{}/{}]\t'
'Time: {batch_time.val:.4f}({batch_time.avg:.4f})\t'
'Loss: {loss.val:.3f}({loss.avg:.3f})\t'
'Prec@1: {top1.val:.3f}({top1.avg:.3f})\t'.format(
i, len(test_loader), batch_time=batch_time,
loss=losses, top1=top1
)
)
log.info(' * Adv Prec@1 {top1.avg:.3f}'.format(top1=top1))
return top1.avg
def eval_adv_test_dist(model, device, test_loader, epsilon, alpha, criterion, log, world_size, attack_iter=40, randomInit=True):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# fix random seed for testing
torch.manual_seed(1)
model.eval()
end = time.time()
for i, (input, target) in enumerate(test_loader):
input, target = input.cuda(non_blocking=True), target.cuda(non_blocking=True)
input_adv = pgd_attack(model, input, target, device, eps=epsilon, iters=attack_iter, alpha=alpha, randomInit=randomInit).data
# compute output
output = model(input_adv)
output_list = [torch.zeros_like(output) for _ in range(world_size)]
torch.distributed.all_gather(output_list, output)
output = torch.cat(output_list)
target_list = [torch.zeros_like(target) for _ in range(world_size)]
torch.distributed.all_gather(target_list, target)
target = torch.cat(target_list)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, = accuracy(output.data, target, topk=(1,))
top1.update(prec1, input.size(0))
losses.update(loss.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
if (i % 10 == 0) or (i == len(test_loader) - 1):
log.info(
'Test: [{}/{}]\t'
'Time: {batch_time.val:.4f}({batch_time.avg:.4f})\t'
'Loss: {loss.val:.3f}({loss.avg:.3f})\t'
'Prec@1: {top1.val:.3f}({top1.avg:.3f})\t'.format(
i, len(test_loader), batch_time=batch_time,
loss=losses, top1=top1
)
)
log.info(' * Adv Prec@1 {top1.avg:.3f}'.format(top1=top1))
return top1.avg
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class logger(object):
def __init__(self, path):
self.path = path
def info(self, msg):
print(msg)
with open(os.path.join(self.path, "log.txt"), 'a') as f:
f.write(msg + "\n")
def fix_bn(model, fixmode):
if fixmode == 'f1':
# fix none
pass
elif fixmode == 'f2':
# fix previous three layers
for name, m in model.named_modules():
if not ("layer4" in name or "fc" in name):
m.eval()
elif fixmode == 'f3':
# fix every layer except fc
# fix previous four layers
for name, m in model.named_modules():
if not ("fc" in name):
m.eval()
else:
assert False
# loss
def pair_cosine_similarity(x, eps=1e-8):
n = x.norm(p=2, dim=1, keepdim=True)
return (x @ x.t()) / (n * n.t()).clamp(min=eps)
def nt_xent(x, t=0.5):
# print("device of x is {}".format(x.device))
x = pair_cosine_similarity(x)
x = torch.exp(x / t)
idx = torch.arange(x.size()[0])
# Put positive pairs on the diagonal
idx[::2] += 1
idx[1::2] -= 1
x = x[idx]
# subtract the similarity of 1 from the numerator
x = x.diag() / (x.sum(0) - torch.exp(torch.tensor(1 / t)))
return -torch.log(x).mean()
def cvtPrevious2bnToCurrent2bn(state_dict):
"""
:param state_dict: old state dict with bn and bn adv
:return:
"""
new_state_dict = OrderedDict()
for name, value in state_dict.items():
if ('bn1' in name) and ('adv' not in name):
newName = name.replace('bn1.', 'bn1.bn_list.0.')
elif ('bn1' in name) and ('adv' in name):
newName = name.replace('bn1_adv.', 'bn1.bn_list.1.')
elif ('bn2' in name) and ('adv' not in name):
newName = name.replace('bn2.', 'bn2.bn_list.0.')
elif ('bn2' in name) and ('adv' in name):
newName = name.replace('bn2_adv.', 'bn2.bn_list.1.')
elif ('bn.' in name):
newName = name.replace('bn.', 'bn.bn_list.0.')
elif ('bn_adv.' in name):
newName = name.replace('bn_adv.', 'bn.bn_list.1.')
elif 'bn3' in name:
assert False
else:
newName = name
print("convert name: {} to {}".format(name, newName))
new_state_dict[newName] = value
return new_state_dict
class augStrengthScheduler(object):
"""Computes and stores the average and current value"""
def __init__(self, aug_dif_scheduler_strength_range, aug_dif_scheduler_epoch_range, transGeneFun):
if ',' in aug_dif_scheduler_strength_range:
self.aug_dif_scheduler_strength_range = list(map(float, aug_dif_scheduler_strength_range.split(',')))
else:
self.aug_dif_scheduler_strength_range = []
if ',' in aug_dif_scheduler_epoch_range:
self.aug_dif_scheduler_epoch_range = list(map(int, aug_dif_scheduler_epoch_range.split(',')))
else:
self.aug_dif_scheduler_epoch_range = []
self.transGeneFun = transGeneFun
self.epoch = 0
assert (len(self.aug_dif_scheduler_strength_range) == 2 and len(self.aug_dif_scheduler_epoch_range) == 2) or \
(len(self.aug_dif_scheduler_strength_range) == 0 and len(self.aug_dif_scheduler_epoch_range) == 0)
def step(self):
self.epoch += 1
if len(self.aug_dif_scheduler_strength_range) == 0 and len(self.aug_dif_scheduler_epoch_range) == 0:
return self.transGeneFun(1.0)
else:
startStrength, endStrength = self.aug_dif_scheduler_strength_range
startEpoch, endEpoch = self.aug_dif_scheduler_epoch_range
strength = min(max(0, self.epoch - startEpoch), endEpoch - startEpoch) / (endEpoch - startEpoch) * (endStrength - startStrength) + startStrength
return self.transGeneFun(strength)
# new_state_dict = cvtPrevious2bnToCurrent2bn(checkpoint['state_dict'])
# model.load_state_dict(new_state_dict)