-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReverseMaskRNN.lua
56 lines (49 loc) · 2.42 KB
/
ReverseMaskRNN.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
------------------------------------------------------------------------
--[[ ReverseMaskRNN ]] --
-- Applies the same masking procedure as MaskRNN, however reverses the input.
-- Used in bi-directional RNNs for reverse RNN.
-- Input is of dimensions (T*N)*H ( the same as RNN) and output of (T*N)*H.
-- seqLengths: N, indicate the real length of each sample in a minibatch.
------------------------------------------------------------------------
require 'dpnn'
local ReverseMaskRNN, parent = torch.class("nn.ReverseMaskRNN", "nn.Decorator")
function ReverseMaskRNN:__init(module)
parent.__init(self, module)
end
function ReverseMaskRNN:reverse(input, seqLengths)
local batchsize = input:size(2)
assert(batchsize == seqLengths:size(1), ' number of sequence lengths does not match the number of samples in the batch for masking')
local output = input.new():resizeAs(input):zero()
for i = 1, batchsize do
local T = seqLengths[i]
for t = 1, T do
output[T - t + 1][i]:copy(input[t][i])
end
end
return output
end
function ReverseMaskRNN:updateOutput(input)
self.reverse_input = input[1]:view(-1, input[2]:size(1), input[1]:size(2))
self.reverse_input = self:reverse(self.reverse_input, input[2])
local reverse_output = self.module:updateOutput(self.reverse_input)
self.output = self:reverse(reverse_output, input[2])
self.output = self.output:view(self.reverse_input:size(1) * self.reverse_input:size(2), -1)
return self.output
end
function ReverseMaskRNN:updateGradInput(input, gradOutput)
self.reverse_gradOutput = gradOutput:view(self.reverse_input:size(1), input[2]:size(1), -1)
self.reverse_gradOutput = self:reverse(self.reverse_gradOutput, input[2])
local reverse_gradInput = self.module:updateGradInput(self.reverse_input,
self.reverse_gradOutput)
self.gradInput = self:reverse(reverse_gradInput, input[2]):viewAs(input[1])
return { self.gradInput, nil }
end
function ReverseMaskRNN:accGradParameters(input, gradOutput, scale)
self.module:accGradParameters(self.reverse_input, self.reverse_gradOutput, scale)
end
function ReverseMaskRNN:accUpdateGradParameters(input, gradOutput, lr)
self.module:accUpdateGradParameters(self.reverse_input, self.reverse_gradOutput, lr)
end
function ReverseMaskRNN:sharedAccUpdateGradParameters(input, gradOutput, lr)
self.module:sharedAccUpdateGradParameters(self.reverse_input, self.reverse_gradOutput, lr)
end