forked from yanpanlau/Keras-FlappyBird
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqlearn.py
211 lines (173 loc) · 7.04 KB
/
qlearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
from __future__ import print_function
import argparse
import skimage as skimage
from skimage import transform, color, exposure
from skimage.transform import rotate
from skimage.viewer import ImageViewer
import sys
sys.path.append("game/")
import wrapped_flappy_bird as game
import random
import numpy as np
from collections import deque
import json
from keras import initializations
from keras.initializations import normal, identity
from keras.models import model_from_json
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD , Adam
import tensorflow as tf
GAME = 'bird' # the name of the game being played for log files
CONFIG = 'nothreshold'
ACTIONS = 2 # number of valid actions
GAMMA = 0.99 # decay rate of past observations
OBSERVATION = 3200. # timesteps to observe before training
EXPLORE = 3000000. # frames over which to anneal epsilon
FINAL_EPSILON = 0.0001 # final value of epsilon
INITIAL_EPSILON = 0.1 # starting value of epsilon
REPLAY_MEMORY = 50000 # number of previous transitions to remember
BATCH = 32 # size of minibatch
FRAME_PER_ACTION = 1
LEARNING_RATE = 1e-4
img_rows , img_cols = 80, 80
#Convert image into Black and white
img_channels = 4 #We stack 4 frames
def buildmodel():
print("Now we build the model")
model = Sequential()
model.add(Convolution2D(32, 8, 8, subsample=(4, 4), border_mode='same',input_shape=(img_rows,img_cols,img_channels))) #80*80*4
model.add(Activation('relu'))
model.add(Convolution2D(64, 4, 4, subsample=(2, 2), border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3, subsample=(1, 1), border_mode='same'))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(2))
adam = Adam(lr=LEARNING_RATE)
model.compile(loss='mse',optimizer=adam)
print("We finish building the model")
return model
def trainNetwork(model,args):
# open up a game state to communicate with emulator
game_state = game.GameState()
# store the previous observations in replay memory
D = deque()
# get the first state by doing nothing and preprocess the image to 80x80x4
do_nothing = np.zeros(ACTIONS)
do_nothing[0] = 1
x_t, r_0, terminal = game_state.frame_step(do_nothing)
x_t = skimage.color.rgb2gray(x_t)
x_t = skimage.transform.resize(x_t,(80,80))
x_t = skimage.exposure.rescale_intensity(x_t,out_range=(0,255))
s_t = np.stack((x_t, x_t, x_t, x_t), axis=2)
#print (s_t.shape)
#In Keras, need to reshape
s_t = s_t.reshape(1, s_t.shape[0], s_t.shape[1], s_t.shape[2]) #1*80*80*4
if args['mode'] == 'Run':
OBSERVE = 999999999 #We keep observe, never train
epsilon = FINAL_EPSILON
print ("Now we load weight")
model.load_weights("model.h5")
adam = Adam(lr=LEARNING_RATE)
model.compile(loss='mse',optimizer=adam)
print ("Weight load successfully")
else: #We go to training mode
OBSERVE = OBSERVATION
epsilon = INITIAL_EPSILON
t = 0
while (True):
loss = 0
Q_sa = 0
action_index = 0
r_t = 0
a_t = np.zeros([ACTIONS])
#choose an action epsilon greedy
if t % FRAME_PER_ACTION == 0:
if random.random() <= epsilon:
print("----------Random Action----------")
action_index = random.randrange(ACTIONS)
a_t[action_index] = 1
else:
q = model.predict(s_t) #input a stack of 4 images, get the prediction
max_Q = np.argmax(q)
action_index = max_Q
a_t[max_Q] = 1
#We reduced the epsilon gradually
if epsilon > FINAL_EPSILON and t > OBSERVE:
epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE
#run the selected action and observed next state and reward
x_t1_colored, r_t, terminal = game_state.frame_step(a_t)
x_t1 = skimage.color.rgb2gray(x_t1_colored)
x_t1 = skimage.transform.resize(x_t1,(80,80))
x_t1 = skimage.exposure.rescale_intensity(x_t1, out_range=(0, 255))
x_t1 = x_t1.reshape(1, x_t1.shape[0], x_t1.shape[1], 1) #1x80x80x1
s_t1 = np.append(x_t1, s_t[:, :, :, :3], axis=3)
# store the transition in D
D.append((s_t, action_index, r_t, s_t1, terminal))
if len(D) > REPLAY_MEMORY:
D.popleft()
#only train if done observing
if t > OBSERVE:
#sample a minibatch to train on
minibatch = random.sample(D, BATCH)
inputs = np.zeros((BATCH, s_t.shape[1], s_t.shape[2], s_t.shape[3])) #32, 80, 80, 4
print (inputs.shape)
targets = np.zeros((inputs.shape[0], ACTIONS)) #32, 2
#Now we do the experience replay
for i in range(0, len(minibatch)):
state_t = minibatch[i][0]
action_t = minibatch[i][1] #This is action index
reward_t = minibatch[i][2]
state_t1 = minibatch[i][3]
terminal = minibatch[i][4]
# if terminated, only equals reward
inputs[i:i + 1] = state_t #I saved down s_t
targets[i] = model.predict(state_t) # Hitting each buttom probability
Q_sa = model.predict(state_t1)
if terminal:
targets[i, action_t] = reward_t
else:
targets[i, action_t] = reward_t + GAMMA * np.max(Q_sa)
# targets2 = normalize(targets)
loss += model.train_on_batch(inputs, targets)
s_t = s_t1
t = t + 1
# save progress every 10000 iterations
if t % 1000 == 0:
print("Now we save model")
model.save_weights("model.h5", overwrite=True)
with open("model.json", "w") as outfile:
json.dump(model.to_json(), outfile)
# print info
state = ""
if t <= OBSERVE:
state = "observe"
elif t > OBSERVE and t <= OBSERVE + EXPLORE:
state = "explore"
else:
state = "train"
print("TIMESTEP", t, "/ STATE", state, \
"/ EPSILON", epsilon, "/ ACTION", action_index, "/ REWARD", r_t, \
"/ Q_MAX " , np.max(Q_sa), "/ Loss ", loss)
print("Episode finished!")
print("************************")
def playGame(args):
model = buildmodel()
trainNetwork(model,args)
def main():
parser = argparse.ArgumentParser(description='Description of your program')
parser.add_argument('-m','--mode', help='Train / Run', required=True)
args = vars(parser.parse_args())
playGame(args)
if __name__ == "__main__":
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
from keras import backend as K
K.set_session(sess)
main()