-
Notifications
You must be signed in to change notification settings - Fork 77
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Please, help to make the web interface using Flask library #114
Comments
I have tried to create a program, but the program cannot run according to my wishes. Here is the program code that I used: import numpy as np
import cv2
import torch
import glob as glob
import os
import time
import argparse
import yaml
import matplotlib.pyplot as plt
from flask import Flask, render_template, request
import os
import glob
from models.create_fasterrcnn_model import create_model
from utils.annotations import (
inference_annotations, convert_detections
)
from utils.general import set_infer_dir
from utils.transforms import infer_transforms, resize
from utils.logging import log_to_json
app = Flask(__name__)
def collect_all_images(dir_test):
"""
Function to return a list of image paths.
:param dir_test: Directory containing images or single image path.
Returns:
test_images: List containing all image paths.
"""
test_images = []
if os.path.isdir(dir_test):
image_file_types = ['*.jpg', '*.jpeg', '*.png', '*.ppm']
for file_type in image_file_types:
test_images.extend(glob.glob(f"{dir_test}/{file_type}"))
else:
test_images.append(dir_test)
return test_images
def parse_opt():
# Construct the argument parser.
parser = argparse.ArgumentParser()
parser.add_argument(
'-i', '--input',
help='folder path to input input image (one image or a folder path)',
)
parser.add_argument(
'--data',
default=None,
help='(optional) path to the data config file'
)
parser.add_argument(
'-m', '--model',
default=None,
help='name of the model'
)
parser.add_argument(
'-w', '--weights',
default=None,
help='path to trained checkpoint weights if providing custom YAML file'
)
parser.add_argument(
'-th', '--threshold',
default=0.3,
type=float,
help='detection threshold'
)
parser.add_argument(
'-si', '--show',
action='store_true',
help='visualize output only if this argument is passed'
)
parser.add_argument(
'-mpl', '--mpl-show',
dest='mpl_show',
action='store_true',
help='visualize using matplotlib, helpful in notebooks'
)
parser.add_argument(
'-d', '--device',
default=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'),
help='computation/training device, default is GPU if GPU present'
)
parser.add_argument(
'-ims', '--imgsz',
default=None,
type=int,
help='resize image to, by default use the original frame/image size'
)
parser.add_argument(
'-nlb', '--no-labels',
dest='no_labels',
action='store_true',
help='do not show labels during on top of bounding boxes'
)
parser.add_argument(
'--square-img',
dest='square_img',
action='store_true',
help='whether to use square image resize, else use aspect ratio resize'
)
parser.add_argument(
'--classes',
nargs='+',
type=int,
default=None,
help='filter classes by visualization, --classes 1 2 3'
)
parser.add_argument(
'--track',
action='store_true'
)
parser.add_argument(
'--log-json',
dest='log_json',
action='store_true',
help='store a json log file in COCO format in the output directory'
)
args = vars(parser.parse_args())
return args
def main(args):
# For same annotation colors each time.
np.random.seed(42)
# Load the data configurations.
data_configs = None
if args['data'] is not None:
with open(args['data']) as file:
data_configs = yaml.safe_load(file)
NUM_CLASSES = data_configs['NC']
CLASSES = data_configs['CLASSES']
DEVICE = args['device']
OUT_DIR = set_infer_dir()
# Load the pretrained model
if args['weights'] is None:
# If the config file is still None,
# then load the default one for COCO.
if data_configs is None:
with open(os.path.join('data_configs', 'test_image_config.yaml')) as file:
data_configs = yaml.safe_load(file)
NUM_CLASSES = data_configs['NC']
CLASSES = data_configs['CLASSES']
try:
build_model = create_model[args['model']]
model, coco_model = build_model(num_classes=NUM_CLASSES, coco_model=True)
except:
build_model = create_model['fasterrcnn_resnet50_fpn_v2']
model, coco_model = build_model(num_classes=NUM_CLASSES, coco_model=True)
# Load weights if path provided.
if args['weights'] is not None:
checkpoint = torch.load(args['weights'], map_location=DEVICE)
# If config file is not given, load from model dictionary.
if data_configs is None:
data_configs = True
NUM_CLASSES = checkpoint['data']['NC']
CLASSES = checkpoint['data']['CLASSES']
try:
print('Building from model name arguments...')
build_model = create_model[str(args['model'])]
except:
build_model = create_model[checkpoint['model_name']]
model = build_model(num_classes=NUM_CLASSES, coco_model=False)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE).eval()
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
if args['input'] == None:
DIR_TEST = data_configs['image_path']
test_images = collect_all_images(DIR_TEST)
else:
DIR_TEST = args['input']
test_images = collect_all_images(DIR_TEST)
print(f"Test instances: {len(test_images)}")
# Define the detection threshold any detection having
# score below this will be discarded.
detection_threshold = args['threshold']
# To count the total number of frames iterated through.
frame_count = 0
# To keep adding the frames' FPS.
total_fps = 0
for i in range(len(test_images)):
# Get the image file name for saving output later on.
image_name = test_images[i].split(os.path.sep)[-1].split('.')[0]
orig_image = cv2.imread(test_images[i])
frame_height, frame_width, _ = orig_image.shape
if args['imgsz'] != None:
RESIZE_TO = args['imgsz']
else:
RESIZE_TO = frame_width
# orig_image = image.copy()
image_resized = resize(
orig_image, RESIZE_TO, square=args['square_img']
)
image = image_resized.copy()
# BGR to RGB
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = infer_transforms(image)
# Add batch dimension.
image = torch.unsqueeze(image, 0)
start_time = time.time()
with torch.no_grad():
outputs = model(image.to(DEVICE))
end_time = time.time()
# Get the current fps.
fps = 1 / (end_time - start_time)
# Add `fps` to `total_fps`.
total_fps += fps
# Increment frame count.
frame_count += 1
# Load all detection to CPU for further operations.
outputs = [{k: v.to('cpu') for k, v in t.items()} for t in outputs]
# Log to JSON?
if args['log_json']:
log_to_json(orig_image, os.path.join(OUT_DIR, 'log.json'), outputs)
# Carry further only if there are detected boxes.
if len(outputs[0]['boxes']) != 0:
draw_boxes, pred_classes, scores = convert_detections(
outputs, detection_threshold, CLASSES, args
)
orig_image = inference_annotations(
draw_boxes,
pred_classes,
scores,
CLASSES,
COLORS,
orig_image,
image_resized,
args
)
if args['show']:
cv2.imshow('Prediction', orig_image)
cv2.waitKey(1)
if args['mpl_show']:
plt.imshow(orig_image[:, :, ::-1])
plt.axis('off')
plt.show()
cv2.imwrite(f"{OUT_DIR}/{image_name}.jpg", orig_image)
print(f"Image {i+1} done...")
print('-'*50)
print('TEST PREDICTIONS COMPLETE')
cv2.destroyAllWindows()
# Calculate and print the average FPS.
avg_fps = total_fps / frame_count
print(f"Average FPS: {avg_fps:.3f}")
@app.route('/', methods=['GET', 'POST'])
def upload_image():
if request.method == 'POST':
uploaded_file = request.files['file']
if uploaded_file.filename != '':
upload_folder = 'uploads'
os.makedirs(upload_folder, exist_ok=True)
image_path = os.path.join(upload_folder, uploaded_file.filename)
uploaded_file.save(image_path)
test_images = collect_all_images(image_path)
return render_template('uploaded_images.html', test_images=test_images)
return render_template('upload_image.html')
if __name__ == '__main__':
app.run(debug=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I want to create a detection object to update the inference.py program, I want to run it through Pycharm software using the flask library to load the display for uploading images which will then be processed and produce output according to the test results. I think the display is as follows:
I thank you very much if you are willing to help me.
The text was updated successfully, but these errors were encountered: