forked from salesforce/CodeT5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
263 lines (236 loc) · 12.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from torch.utils.data import TensorDataset
import numpy as np
import logging
import os
import random
import torch
import time
from tqdm import tqdm
from _utils import *
logger = logging.getLogger(__name__)
def load_and_cache_gen_data(args, filename, pool, tokenizer, split_tag, only_src=False, is_sample=False):
# cache the data into args.cache_path except it is sampled
# only_src: control whether to return only source ids for bleu evaluating (dev/test)
# return: examples (Example object), data (TensorDataset)
data_tag = '_all' if args.data_num == -1 else '_%d' % args.data_num
cache_fn = '{}/{}.pt'.format(args.cache_path, split_tag + ('_src' if only_src else '') + data_tag)
examples = read_examples(filename, args.data_num, args.task)
if is_sample:
examples = random.sample(examples, min(5000, len(examples)))
if split_tag == 'train':
calc_stats(examples, tokenizer, is_tokenize=True)
else:
calc_stats(examples)
if os.path.exists(cache_fn) and not is_sample:
logger.info("Load cache data from %s", cache_fn)
data = torch.load(cache_fn)
else:
if is_sample:
logger.info("Sample 5k data for computing bleu from %s", filename)
else:
logger.info("Create cache data into %s", cache_fn)
tuple_examples = [(example, idx, tokenizer, args, split_tag) for idx, example in enumerate(examples)]
features = pool.map(convert_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples)))
all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long)
if split_tag == 'test' or only_src:
data = TensorDataset(all_source_ids)
else:
all_target_ids = torch.tensor([f.target_ids for f in features], dtype=torch.long)
data = TensorDataset(all_source_ids, all_target_ids)
if args.local_rank in [-1, 0] and not is_sample:
torch.save(data, cache_fn)
return examples, data
def load_and_cache_clone_data(args, filename, pool, tokenizer, split_tag, is_sample=False):
cache_fn = '{}/{}.pt'.format(args.cache_path, split_tag + '_all' if args.data_num == -1 else '_%d' % args.data_num)
examples = read_examples(filename, args.data_num, args.task)
if is_sample:
examples = random.sample(examples, int(len(examples) * 0.1))
calc_stats(examples, tokenizer, is_tokenize=True)
if os.path.exists(cache_fn):
logger.info("Load cache data from %s", cache_fn)
data = torch.load(cache_fn)
else:
if is_sample:
logger.info("Sample 10 percent of data from %s", filename)
elif args.data_num == -1:
logger.info("Create cache data into %s", cache_fn)
tuple_examples = [(example, idx, tokenizer, args) for idx, example in enumerate(examples)]
features = pool.map(convert_clone_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples)))
all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long)
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
data = TensorDataset(all_source_ids, all_labels)
if args.local_rank in [-1, 0] and args.data_num == -1:
torch.save(data, cache_fn)
return examples, data
def load_and_cache_defect_data(args, filename, pool, tokenizer, split_tag, is_sample=False):
cache_fn = os.path.join(args.cache_path, split_tag)
examples = read_examples(filename, args.data_num, args.task)
if is_sample:
examples = random.sample(examples, int(len(examples) * 0.1))
calc_stats(examples, tokenizer, is_tokenize=True)
if os.path.exists(cache_fn):
logger.info("Load cache data from %s", cache_fn)
data = torch.load(cache_fn)
else:
if is_sample:
logger.info("Sample 10 percent of data from %s", filename)
elif args.data_num == -1:
logger.info("Create cache data into %s", cache_fn)
tuple_examples = [(example, idx, tokenizer, args) for idx, example in enumerate(examples)]
features = pool.map(convert_defect_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples)))
# features = [convert_clone_examples_to_features(x) for x in tuple_examples]
all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long)
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
data = TensorDataset(all_source_ids, all_labels)
if args.local_rank in [-1, 0] and args.data_num == -1:
torch.save(data, cache_fn)
return examples, data
def load_and_cache_multi_gen_data(args, pool, tokenizer, split_tag, only_src=False, is_sample=False):
cache_fn = os.path.join(args.cache_path, split_tag)
if os.path.exists(cache_fn) and not is_sample:
logger.info("Load cache data from %s", cache_fn)
examples_data_dict = torch.load(cache_fn)
else:
examples_data_dict = {}
task_list = ['summarize', 'translate', 'refine', 'concode', 'defect']
for task in task_list:
if task == 'summarize':
sub_tasks = ['ruby', 'javascript', 'go', 'python', 'java', 'php']
elif task == 'translate':
sub_tasks = ['java-cs', 'cs-java']
elif task == 'refine':
sub_tasks = ['small', 'medium']
else:
sub_tasks = ['none']
args.task = task
for sub_task in sub_tasks:
args.sub_task = sub_task
if task == 'summarize':
args.max_source_length = 256
args.max_target_length = 128
elif task == 'translate':
args.max_source_length = 320
args.max_target_length = 256
elif task == 'refine':
if sub_task == 'small':
args.max_source_length = 130
args.max_target_length = 120
else:
args.max_source_length = 240
args.max_target_length = 240
elif task == 'concode':
args.max_source_length = 320
args.max_target_length = 150
elif task == 'defect':
args.max_source_length = 512
args.max_target_length = 3 # as do not need to add lang ids
filename = get_filenames(args.data_dir, args.task, args.sub_task, split_tag)
examples = read_examples(filename, args.data_num, args.task)
if is_sample:
examples = random.sample(examples, min(5000, len(examples)))
if split_tag == 'train':
calc_stats(examples, tokenizer, is_tokenize=True)
else:
calc_stats(examples)
tuple_examples = [(example, idx, tokenizer, args, split_tag) for idx, example in enumerate(examples)]
if args.data_num == -1:
features = pool.map(convert_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples)))
else:
features = [convert_examples_to_features(x) for x in tuple_examples]
all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long)
if only_src:
data = TensorDataset(all_source_ids)
else:
all_target_ids = torch.tensor([f.target_ids for f in features], dtype=torch.long)
data = TensorDataset(all_source_ids, all_target_ids)
examples_data_dict['{}_{}'.format(task, sub_task) if sub_task != 'none' else task] = (examples, data)
if args.local_rank in [-1, 0] and not is_sample:
torch.save(examples_data_dict, cache_fn)
logger.info("Save data into %s", cache_fn)
return examples_data_dict
def get_filenames(data_root, task, sub_task, split=''):
if task == 'concode':
data_dir = '{}/{}'.format(data_root, task)
train_fn = '{}/train.json'.format(data_dir)
dev_fn = '{}/dev.json'.format(data_dir)
test_fn = '{}/test.json'.format(data_dir)
elif task == 'summarize':
data_dir = '{}/{}/{}'.format(data_root, task, sub_task)
train_fn = '{}/train.jsonl'.format(data_dir)
dev_fn = '{}/valid.jsonl'.format(data_dir)
test_fn = '{}/test.jsonl'.format(data_dir)
elif task == 'refine':
data_dir = '{}/{}/{}'.format(data_root, task, sub_task)
train_fn = '{}/train.buggy-fixed.buggy,{}/train.buggy-fixed.fixed'.format(data_dir, data_dir)
dev_fn = '{}/valid.buggy-fixed.buggy,{}/valid.buggy-fixed.fixed'.format(data_dir, data_dir)
test_fn = '{}/test.buggy-fixed.buggy,{}/test.buggy-fixed.fixed'.format(data_dir, data_dir)
elif task == 'translate':
data_dir = '{}/{}'.format(data_root, task)
if sub_task == 'cs-java':
train_fn = '{}/train.java-cs.txt.cs,{}/train.java-cs.txt.java'.format(data_dir, data_dir)
dev_fn = '{}/valid.java-cs.txt.cs,{}/valid.java-cs.txt.java'.format(data_dir, data_dir)
test_fn = '{}/test.java-cs.txt.cs,{}/test.java-cs.txt.java'.format(data_dir, data_dir)
else:
train_fn = '{}/train.java-cs.txt.java,{}/train.java-cs.txt.cs'.format(data_dir, data_dir)
dev_fn = '{}/valid.java-cs.txt.java,{}/valid.java-cs.txt.cs'.format(data_dir, data_dir)
test_fn = '{}/test.java-cs.txt.java,{}/test.java-cs.txt.cs'.format(data_dir, data_dir)
elif task == 'clone':
data_dir = '{}/{}'.format(data_root, task)
train_fn = '{}/train.txt'.format(data_dir)
dev_fn = '{}/valid.txt'.format(data_dir)
test_fn = '{}/test.txt'.format(data_dir)
elif task == 'defect':
data_dir = '{}/{}'.format(data_root, task)
train_fn = '{}/train.jsonl'.format(data_dir)
dev_fn = '{}/valid.jsonl'.format(data_dir)
test_fn = '{}/test.jsonl'.format(data_dir)
if split == 'train':
return train_fn
elif split == 'dev':
return dev_fn
elif split == 'test':
return test_fn
else:
return train_fn, dev_fn, test_fn
def read_examples(filename, data_num, task):
read_example_dict = {
'summarize': read_summarize_examples,
'refine': read_refine_examples,
'translate': read_translate_examples,
'concode': read_concode_examples,
'clone': read_clone_examples,
'defect': read_defect_examples,
}
return read_example_dict[task](filename, data_num)
def calc_stats(examples, tokenizer=None, is_tokenize=False):
avg_src_len = []
avg_trg_len = []
avg_src_len_tokenize = []
avg_trg_len_tokenize = []
for ex in examples:
if is_tokenize:
avg_src_len.append(len(ex.source.split()))
avg_trg_len.append(len(str(ex.target).split()))
avg_src_len_tokenize.append(len(tokenizer.tokenize(ex.source)))
avg_trg_len_tokenize.append(len(tokenizer.tokenize(str(ex.target))))
else:
avg_src_len.append(len(ex.source.split()))
avg_trg_len.append(len(str(ex.target).split()))
if is_tokenize:
logger.info("Read %d examples, avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d",
len(examples), np.mean(avg_src_len), np.mean(avg_trg_len), max(avg_src_len), max(avg_trg_len))
logger.info("[TOKENIZE] avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d",
np.mean(avg_src_len_tokenize), np.mean(avg_trg_len_tokenize), max(avg_src_len_tokenize),
max(avg_trg_len_tokenize))
else:
logger.info("Read %d examples, avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d",
len(examples), np.mean(avg_src_len), np.mean(avg_trg_len), max(avg_src_len), max(avg_trg_len))
def get_elapse_time(t0):
elapse_time = time.time() - t0
if elapse_time > 3600:
hour = int(elapse_time // 3600)
minute = int((elapse_time % 3600) // 60)
return "{}h{}m".format(hour, minute)
else:
minute = int((elapse_time % 3600) // 60)
return "{}m".format(minute)