Skip to content

Latest commit

 

History

History
187 lines (131 loc) · 21.7 KB

TREC-Deep-Learning-2020.md

File metadata and controls

187 lines (131 loc) · 21.7 KB

TREC 2020 Deep Learning Track Guidelines

Overview paper: https://arxiv.org/pdf/2102.07662.pdf

Note: You are viewing the guidelines for the 2020 edition of the TREC Deep Learning track. Please visit https://microsoft.github.io/msmarco/TREC-Deep-Learning for the upcoming / latest edition of the track.

Timetable

  • August 6: Deadline for submitting runs for document and passage ranking tasks
  • November 18-20: TREC conference

Previous edition

Registration

To participate in TREC please pre-register at the following website: https://ir.nist.gov/trecsubmit.open/application.html

Introduction

The Deep Learning Track studies information retrieval in a large training data regime. This is the case where the number of training queries with at least one positive label is at least in the tens of thousands, if not hundreds of thousands or more. This corresponds to real-world scenarios such as training based on click logs and training based on labels from shallow pools (such as the pooling in the TREC Million Query Track or the evaluation of search engines based on early precision).

Certain machine learning based methods, such as methods based on deep learning are known to require very large datasets for training. Lack of such large scale datasets has been a limitation for developing such methods for common information retrieval tasks, such as document ranking. The Deep Learning Track organised in 2019 aimed at providing large scale datasets to TREC, and create a focused research effort with a rigorous blind evaluation of ranker for the passage ranking and document ranking tasks.

In 2020, the track will continue to have the same tasks (document ranking and passage ranking) and goals. Similar to the previous year, one of the main goals of the track in 2020 is to study what methods work best when a large amount of training data is available. For example, do the same methods that work on small data also work on large data? How much do methods improve when given more training data? What external data and models can be brought in to bear in this scenario, and how useful is it to combine full supervision with other forms of supervision?

ORCAS click data

This year we also release a large scale click dataset constructed from the logs of a major search engine. The ORCAS data. The data could be used in a variety of ways, for example as additional training data (almost 50 times larger than the main training set) or as a document field in addition to title, URL and body text.

ORCAS data: https://microsoft.github.io/msmarco/ORCAS

Deep Learning Track Tasks

The Deep Learning Track has two tasks: Passage ranking and document ranking; and two subtasks in each case: full ranking and re-ranking. You can submit up to three runs for each of the subtasks.

Each task uses a large human-generated set of training labels, from the MS-MARCO dataset. The two tasks use the same test queries. They also use the same form of training data with usually one positive training document/passage per training query. In the case of passage ranking, there is a direct human label that says the passage can be used to answer the query, whereas for training the document ranking task we transfer the same passage-level labels to document-level labels.

For both tasks, the participants are encouraged to study the efficacy of transfer learning methods. Our current training labels (from MS MARCO) are generated differently than the test labels (generated by NIST). This year participants also have access to 2019 NIST test labels for validation or traininig. Participants can also use external corpora for large scale language model pretraining, or adapt algorithms built for one task of the track (e.g. passage ranking) to the other task (e.g. document ranking). This allows participants to study a variety of transfer learning strategies.

Below the two tasks are described in more detail.

Document Ranking Task

The first task focuses on document ranking. We have two subtasks related to this: Full ranking and top-100 re-ranking.

In the full ranking (retrieval) subtask, you are expected to rank documents based on their relevance to the question, where documents can be retrieved from the full document collection provided. You can submit up to 100 documents for this task. It models a scenario where you are building an end-to-end retrieval system.

In the re-ranking subtask, we provide you with an initial ranking of 100 documents from a simple IR system, and you are expected to re-rank the documents in terms of their relevance to the question. This is a very common real-world scenario, since many end-to-end systems are implemented as retrieval followed by top-k re-ranking. The re-ranking subtask allows participants to focus on re-ranking only, without needing to implement an end-to-end system. It also makes those re-ranking runs more comparable, because they all start from the same set of 100 candidates.

Passage Ranking Task

Similar to the document ranking task, the passage ranking task also has a full ranking and re-ranking subtasks.

In context of full ranking (retrieval) subtask, given a question, you are expected to rank passages from the full collection in terms of their likelihood of containing an answer to the question. You can submit up to 1,000 passages for this end-to-end retrieval task.

In context of top-1000 re-ranking subtask, we provide you with an initial ranking of 1000 passages and you are expected to re-rank these passages based on their likelihood of containing an answer to the question. In this subtask, we can compare different re-ranking methods based on the same initial set of 1000 candidates, with the same rationale as described for the document re-ranking subtask.

Use of external information

You are allowed to use external information while developing your runs. When you submit your runs, please fill in a form listing what resources you used. This could include an external corpus such as Wikipedia or a pre-trained model (e.g. word embeddings, BERT). This could also include the provided set of document ranking training data, but also optionally other data such as the passage ranking task labels or external labels or pretrained models. This will allow us to analyze the runs and break they down into types.

IMPORTANT NOTE: It is prohibited to use any datasets from msmarco.org in your submission except those listed below. The original MS MARCO dataset reveals some minor details of how they were constructed that would not be available in a real-world search engine; hence, should be avoided.

Datasets

This year we have a document ranking dataset and a passage ranking dataset. The two datasets will share the same set of test queries, which will be released later.

Document ranking dataset

The document ranking dataset is based on source documents, which contained passages in the passage task. Although we have an incomplete set of documents that was gathered some time later than the passage data, the corpus is 3.2 million documents and our training set has 367,013 queries. For each training query, we map from a positive passage ID to the corresponding document ID in our 3.2 million. We do so on the assumption that a document that produced a relevant passage is usually a relevant document.

Type Filename File size Num Records Format
Corpus msmarco-docs.tsv 22 GB 3,213,835 tsv: docid, url, title, body
Corpus msmarco-docs.trec 22 GB 3,213,835 TREC DOC format (same content as msmarco-docs.tsv)
Corpus msmarco-docs-lookup.tsv 101 MB 3,213,835 tsv: docid, offset_trec, offset_tsv
Train msmarco-doctrain-queries.tsv 15 MB 367,013 tsv: qid, query
Train msmarco-doctrain-top100 1.8 GB 36,701,116 TREC submission: qid, "Q0", docid, rank, score, runstring
Train msmarco-doctrain-qrels.tsv 7.6 MB 384,597 TREC qrels format
Dev msmarco-docdev-queries.tsv 216 KB 5,193 tsv: qid, query
Dev msmarco-docdev-top100 27 MB 519,300 TREC submission: qid, "Q0", docid, rank, score, runstring
Dev msmarco-docdev-qrels.tsv 112 KB 5,478 TREC qrels format
Validation (Test 2019) msmarco-test2019-queries.tsv.gz 12K 200 tsv: qid, query
Validation (Test 2019) msmarco-doctest2019-top100.gz 1.1M 20,000 TREC submission: qid, "Q0", docid, rank, score, runstring
Validation (Test 2019) 2019qrels-docs 331K 16,258 qid, "Q0", docid, rating
Test (2020) msmarco-test2020-queries.tsv.gz 12K 200 tsv: qid, query
Test (2020) msmarco-doctest2020-top100.gz 1.1M 20,000 TREC submission: qid, "Q0", docid, rank, score, runstring

Passage ranking dataset

This passage dataset is based on the public MS MARCO dataset, although our evaluation will be quite different. We will use a different set of test queries and we will use relevance judges to evaluate the quality of passage rankings in much more detail.

Description Filename File size Num Records Format
Collection collection.tar.gz 2.9 GB 8,841,823 tsv: pid, passage
Queries queries.tar.gz 42.0 MB 1,010,916 tsv: qid, query
Qrels Dev qrels.dev.tsv 1.1 MB 59,273 TREC qrels format
Qrels Train qrels.train.tsv 10.1 MB 532,761 TREC qrels format
Queries, Passages, and Relevance Labels collectionandqueries.tar.gz 2.9 GB 10,406,754
Train Triples Small triples.train.small.tar.gz 27.1 GB 39,780,811 tsv: query, positive passage, negative passage
Train Triples Large triples.train.full.tsv.gz 272.2 GB 397,756,691 tsv: query, positive passage, negative passage
Train Triples QID PID Format qidpidtriples.train.full.2.tsv.gz 5.7 GB 397,768,673 tsv: qid, positive pid, negative pid
Top 1000 Train top1000.train.tar.gz 175.0 GB 478,002,393 tsv: qid, pid, query, passage
Top 1000 Dev top1000.dev.tar.gz 2.5 GB 6,668,967 tsv: qid, pid, query, passage
Validation (Test 2019) msmarco-test2019-queries.tsv 12K 200 tsv: qid, query
Validation (Test 2019) msmarco-passagetest2019-top1000.tsv 71M 189,877 tsv: qid, pid, query, passage
Validation (Test 2019) 2019qrels-pass.txt 182K 9,260 qid, "Q0", docid, rating
Test (2020) msmarco-test2020-queries.tsv.gz 12K 200 tsv: qid, query
Test (2020) msmarco-passagetest2020-top1000.tsv 72M 190,699 tsv: qid, pid, query, passage

Submission, evaluation and judging

We will be following a similar format as the ones used by most TREC submissions, which is repeated below. White space is used to separate columns. The width of the columns in the format is not important, but it is important to have exactly six columns per line with at least one space between the columns.

1 Q0 pid1    1 2.73 runid1
1 Q0 pid2    1 2.71 runid1
1 Q0 pid3    1 2.61 runid1
1 Q0 pid4    1 2.05 runid1
1 Q0 pid5    1 1.89 runid1

, where:

  • the first column is the topic (query) number.
  • the second column is currently unused and should always be "Q0".
  • the third column is the official identifier of the retrieved passage in context of passage ranking task, and the identifier of the retrieved document in context of document ranking task.
  • the fourth column is the rank the passage/document is retrieved.
  • the fifth column shows the score (integer or floating point) that generated the ranking. This score must be in descending (non-increasing) order.
  • The sixth column is the ID of the run you are submitting.

As the official evaluation set, we provide a set of test queries, where a subset will be judged by NIST assessors. For this purpose, NIST will be using depth pooling and construct separate pools for the passage ranking and document ranking tasks. Passages/documents in these pools will then be labelled by NIST assessors using multi-graded judgments, allowing us to measure NDCG. The same test queries are used for passage retrieval and document retrieval.

Besides our main evaluation using the NIST labels and NDCG, we also have sparse labels for the test queries, which already exist as part of the MS-Marco dataset. More information regarding how these sparse labels were obtained can be found at https://arxiv.org/abs/1611.09268. This allows us to calculate a secondary metric Mean Reciprocal Rank (MRR). For the full ranking setting, we also compute NCG to evaluate the performance of the candidate generation stage.

The main type of TREC submission is automatic, which means there was not manual intervention in running the test queries. This means you should not adjust your runs, rewrite the query, retrain your model, or make any other sorts of manual adjustments after you see the test queries. The ideal case is that you only look at the test queries to check that they ran properly (i.e. no bugs) then you submit your automatic runs. However, if you want to have a human in the loop for your run, or do anything else that uses the test queries to adjust your model or ranking, you can mark your run as manual. Manual runs are interesting, and we may learn a lot, but these are distinct from our main scenario which is a system that responds to unseen queries automatically.

Coordinators

Nick Craswell (Microsoft), Bhaskar Mitra (Microsoft & UCL), Emine Yilmaz (UCL) and Daniel Campos (Microsoft)

Dataset files: Size on disk and md5sum

Since these are large files to download, here are the size in bytes and md5sum, as a reference.

Document ranking

Filename Bytes md5sum
msmarco-docdev-qrels.tsv.gz 40,960 2e00fe62ebfc29eb7ed219ba15f788c9
msmarco-docdev-queries.tsv.gz 94,208 ac20593d71b9c32ab2633230f9cdf10d
msmarco-docdev-top100.gz 5,705,728 ac10255edf321821b0ccd0f123037780
msmarco-docs.trec.gz 8,501,800,960 d4863e4f342982b51b9a8fc668b2d0c0
msmarco-docs.tsv.gz 8,446,275,584 103b19e21ad324d8a5f1ab562425c0b4
msmarco-docs-lookup.tsv.gz 40,378,368 abe791080058a3d3161b213cfea36a45
msmarco-doctrain-qrels.tsv.gz 2,387,968 e2b108a4f79ae1be3f97c356baff2ea0
msmarco-doctrain-queries.tsv.gz 6,459,392 4086d31a9cf2d7b69c4932609058111d
msmarco-doctrain-top100.gz 403,566,592 be32fa12eb71e93014c84775d7465976
msmarco-test2019-queries.tsv.gz 8,192 eda71eccbe4d251af83150abe065368c
msmarco-doctest2019-top100.gz 221,184 91071b89dd52124057a87d53cd22028d
2019qrels-docs 339,438 d7ef53b995ef7e01676ea85d7ec01dda
msmarco-test2020-queries.tsv.gz 8,192 00a406fb0d14ed3752d70d1e4eb98600
msmarco-doctest2020-top100.gz 221,184 aa02eb17d428690ffb41e83cc9daa1d0

Passage ranking

Filename Bytes md5sum
collection.tar.gz 1,035,010,048 87dd01826da3e2ad45447ba5af577628
collectionandqueries.tar.gz 1,057,718,272 31644046b18952c1386cd4564ba2ae69
qidpidtriples.train.full.2.tsv.gz 1,841,693,309 219083e80a0a751c08b968c2f31a4e0b
qrels.dev.tsv 1,204,224 9157ccaeaa8227f91722ba5770787b16
qrels.train.tsv 10,592,256 733fb9fe12d93e497f7289409316eccf
queries.tar.gz 18,882,560 c177b2795d5f2dcc524cf00fcd973be1
top1000.dev.tar.gz 687,415,296 8c140662bdf123a98fbfe3bb174c5831
top1000.train.tar.gz 11,519,984,492 d99fdbd5b2ea84af8aa23194a3263052
triples.train.full.tsv.gz 77,877,731,328 8d509d484ea1971e792b812ae4800c6f
triples.train.small.tar.gz 7,930,881,353 c13bf99ff23ca691105ad12eab837f84
msmarco-test2019-queries.tsv.gz 8,192 eda71eccbe4d251af83150abe065368c
msmarco-passagetest2019-top1000.tsv.gz 26,636,288 ec9e012746aa9763c7ff10b3336a3ce1
2019qrels-pass.txt 187,092 2f4be390198da108f6845c822e5ada14
msmarco-test2020-queries.tsv.gz 8,192 00a406fb0d14ed3752d70d1e4eb98600
msmarco-passagetest2020-top1000.tsv.gz 26,230,784 aa6fbc51d66bd1dc745964c0e140a727

{% include_relative Notice.md %}