forked from google/pigweed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkey_value_store_fuzz_test.cc
211 lines (181 loc) · 7.39 KB
/
key_value_store_fuzz_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright 2021 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
#include <array>
#include <cstring>
#include "pw_checksum/crc16_ccitt.h"
#include "pw_kvs/crc16_checksum.h"
#include "pw_kvs/flash_memory.h"
#include "pw_kvs/flash_test_partition.h"
#include "pw_kvs/key_value_store.h"
#include "pw_kvs_private/config.h"
#include "pw_log/log.h"
#include "pw_span/span.h"
#include "pw_status/status.h"
#include "pw_string/string_builder.h"
#include "pw_unit_test/framework.h"
namespace pw::kvs {
namespace {
using std::byte;
constexpr size_t kMaxEntries = 256;
constexpr size_t kMaxUsableSectors = 1024;
constexpr std::array<const char*, 3> keys{"TestKey1", "Key2", "TestKey3"};
ChecksumCrc16 checksum;
// For KVS magic value always use a random 32 bit integer rather than a
// human readable 4 bytes. See pw_kvs/format.h for more information.
constexpr EntryFormat default_format{.magic = 0x749c361e,
.checksum = &checksum};
} // namespace
TEST(KvsFuzz, FuzzTest) {
FlashPartition& test_partition = FlashTestPartition();
ASSERT_EQ(OkStatus(), test_partition.Erase());
KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs_(&test_partition,
default_format);
ASSERT_EQ(OkStatus(), kvs_.Init());
if (test_partition.sector_size_bytes() < 4 * 1024 ||
test_partition.sector_count() < 4) {
PW_LOG_INFO("Sectors too small, skipping test.");
return; // TODO(davidrogers): Test could be generalized
}
const char* key1 = "Buf1";
const char* key2 = "Buf2";
const size_t kLargestBufSize = 3 * 1024;
static byte buf1[kLargestBufSize];
static byte buf2[kLargestBufSize];
std::memset(buf1, 1, sizeof(buf1));
std::memset(buf2, 2, sizeof(buf2));
// Start with things in KVS
ASSERT_EQ(OkStatus(), kvs_.Put(key1, buf1));
ASSERT_EQ(OkStatus(), kvs_.Put(key2, buf2));
for (size_t j = 0; j < keys.size(); j++) {
ASSERT_EQ(OkStatus(), kvs_.Put(keys[j], j));
}
for (size_t i = 0; i < 100; i++) {
// Vary two sizes
size_t size1 = (kLargestBufSize) / (i + 1);
size_t size2 = (kLargestBufSize) / (100 - i);
for (size_t j = 0; j < 50; j++) {
// Rewrite a single key many times, can fill up a sector
ASSERT_EQ(OkStatus(), kvs_.Put("some_data", j));
}
// Delete and re-add everything except "some_data"
ASSERT_EQ(OkStatus(), kvs_.Delete(key1));
ASSERT_EQ(OkStatus(), kvs_.Put(key1, span(buf1, size1)));
ASSERT_EQ(OkStatus(), kvs_.Delete(key2));
ASSERT_EQ(OkStatus(), kvs_.Put(key2, span(buf2, size2)));
for (size_t j = 0; j < keys.size(); j++) {
ASSERT_EQ(OkStatus(), kvs_.Delete(keys[j]));
ASSERT_EQ(OkStatus(), kvs_.Put(keys[j], j));
}
// Re-enable and verify
ASSERT_EQ(OkStatus(), kvs_.Init());
static byte buf[4 * 1024];
ASSERT_EQ(OkStatus(), kvs_.Get(key1, span(buf, size1)).status());
ASSERT_EQ(std::memcmp(buf, buf1, size1), 0);
ASSERT_EQ(OkStatus(), kvs_.Get(key2, span(buf, size2)).status());
ASSERT_EQ(std::memcmp(buf2, buf2, size2), 0);
for (size_t j = 0; j < keys.size(); j++) {
size_t ret = 1000;
ASSERT_EQ(OkStatus(), kvs_.Get(keys[j], &ret));
ASSERT_EQ(ret, j);
}
}
}
TEST(KvsFuzz, FuzzTestWithGC) {
FlashPartition& test_partition = FlashTestPartition();
ASSERT_EQ(OkStatus(), test_partition.Erase());
KeyValueStoreBuffer<kMaxEntries, kMaxUsableSectors> kvs_(&test_partition,
default_format);
ASSERT_EQ(OkStatus(), kvs_.Init());
if (test_partition.sector_size_bytes() < 4 * 1024 ||
test_partition.sector_count() < 4) {
PW_LOG_INFO("Sectors too small, skipping test.");
return; // TODO(drempel): Test could be generalized
}
const char* key1 = "Buf1";
const char* key2 = "Buf2";
const size_t kLargestBufSize = 3 * 1024;
static byte buf1[kLargestBufSize];
static byte buf2[kLargestBufSize];
std::memset(buf1, 1, sizeof(buf1));
std::memset(buf2, 2, sizeof(buf2));
// Start with things in KVS
ASSERT_EQ(OkStatus(), kvs_.Put(key1, buf1));
ASSERT_EQ(OkStatus(), kvs_.Put(key2, buf2));
for (size_t j = 0; j < keys.size(); j++) {
ASSERT_EQ(OkStatus(), kvs_.Put(keys[j], j));
}
for (size_t i = 0; i < 100; i++) {
// Vary two sizes
size_t size1 = (kLargestBufSize) / (i + 1);
size_t size2 = (kLargestBufSize) / (100 - i);
for (size_t j = 0; j < 50; j++) {
// Rewrite a single key many times, can fill up a sector
ASSERT_EQ(OkStatus(), kvs_.Put("some_data", j));
}
// Delete and re-add everything except "some_data".
ASSERT_EQ(OkStatus(), kvs_.Delete(key1));
ASSERT_EQ(OkStatus(), kvs_.Put(key1, span(buf1, size1)));
ASSERT_EQ(OkStatus(), kvs_.Delete(key2));
// Throw some heavy maintenance in the middle to trigger some GC before
// moving forward.
EXPECT_EQ(OkStatus(), kvs_.HeavyMaintenance());
// check for expected stats
KeyValueStore::StorageStats stats = kvs_.GetStorageStats();
EXPECT_GT(stats.sector_erase_count, 1u);
EXPECT_EQ(stats.reclaimable_bytes, 0u);
if (!PW_KVS_REMOVE_DELETED_KEYS_IN_HEAVY_MAINTENANCE) {
PW_LOG_INFO(
"PW_KVS_REMOVE_DELETED_KEYS_IN_HEAVY_MAINTENANCE is "
"disabled; skipping remainder of test");
return;
}
// Write out rotating keyvalue, read it, and delete kMaxEntries * 4.
// This tests whether garbage collection is working on write.
for (size_t j = 0; j < kMaxEntries * 4; j++) {
size_t readj;
StringBuffer<6> keyVal;
keyVal << j;
ASSERT_EQ(OkStatus(), kvs_.Put(keyVal.c_str(), j));
ASSERT_EQ(OkStatus(), kvs_.Get(keyVal.c_str(), &readj));
ASSERT_EQ(j, readj);
ASSERT_EQ(OkStatus(), kvs_.Delete(keyVal.c_str()));
ASSERT_EQ(Status::NotFound(), kvs_.Get(keyVal.c_str(), &readj));
}
// The KVS should contain key1, "some_data", and all of keys[].
ASSERT_EQ(kvs_.size(), 2u + keys.size());
ASSERT_EQ(OkStatus(), kvs_.Put(key2, span(buf2, size2)));
for (size_t j = 0; j < keys.size(); j++) {
ASSERT_EQ(OkStatus(), kvs_.Delete(keys[j]));
ASSERT_EQ(OkStatus(), kvs_.Put(keys[j], j));
}
// Do some more heavy maintenance, ensure we have the right number
// of keys.
EXPECT_EQ(OkStatus(), kvs_.HeavyMaintenance());
// The KVS should contain key1, key2, "some_data", and all of keys[].
ASSERT_EQ(kvs_.size(), 3u + keys.size());
// Re-enable and verify (final check on store).
ASSERT_EQ(OkStatus(), kvs_.Init());
static byte buf[4 * 1024];
ASSERT_EQ(OkStatus(), kvs_.Get(key1, span(buf, size1)).status());
ASSERT_EQ(std::memcmp(buf, buf1, size1), 0);
ASSERT_EQ(OkStatus(), kvs_.Get(key2, span(buf, size2)).status());
ASSERT_EQ(std::memcmp(buf2, buf2, size2), 0);
for (size_t j = 0; j < keys.size(); j++) {
size_t ret = 1000;
ASSERT_EQ(OkStatus(), kvs_.Get(keys[j], &ret));
ASSERT_EQ(ret, j);
}
}
}
} // namespace pw::kvs