forked from BoyuanChen/neural-state-variables
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
253 lines (227 loc) · 13.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import torch
import shutil
import numpy as np
from torch import nn
import pytorch_lightning as pl
import torch.nn.functional as F
from torchvision import transforms
import torchvision.models as models
from collections import OrderedDict
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from dataset import NeuralPhysDataset
from model_utils import (EncoderDecoder,
EncoderDecoder64x1x1,
RefineDoublePendulumModel,
RefineSinglePendulumModel,
RefineCircularMotionModel,
RefineModelReLU,
RefineSwingStickNonMagneticModel,
RefineAirDancerModel,
RefineLavaLampModel,
RefineFireModel,
RefineElasticPendulumModel,
RefineReactionDiffusionModel)
def mkdir(folder):
if os.path.exists(folder):
shutil.rmtree(folder)
os.makedirs(folder)
class VisDynamicsModel(pl.LightningModule):
def __init__(self,
lr: float=1e-4,
seed: int=1,
if_cuda: bool=True,
if_test: bool=False,
gamma: float=0.5,
log_dir: str='logs',
train_batch: int=512,
val_batch: int=256,
test_batch: int=256,
num_workers: int=8,
model_name: str='encoder-decoder-64',
data_filepath: str='data',
dataset: str='single_pendulum',
lr_schedule: list=[20, 50, 100]) -> None:
super().__init__()
self.save_hyperparameters()
self.kwargs = {'num_workers': self.hparams.num_workers, 'pin_memory': True} if self.hparams.if_cuda else {}
# create visualization saving folder if testing
self.pred_log_dir = os.path.join(self.hparams.log_dir, 'predictions')
self.var_log_dir = os.path.join(self.hparams.log_dir, 'variables')
if not self.hparams.if_test:
mkdir(self.pred_log_dir)
mkdir(self.var_log_dir)
self.__build_model()
def __build_model(self):
# model
if self.hparams.model_name == 'encoder-decoder':
self.model = EncoderDecoder(in_channels=3)
if self.hparams.model_name == 'encoder-decoder-64':
self.model = EncoderDecoder64x1x1(in_channels=3)
if self.hparams.model_name == 'refine-64' and self.hparams.dataset == 'single_pendulum':
self.model = RefineSinglePendulumModel(in_channels=64)
if self.hparams.model_name == 'refine-64' and self.hparams.dataset == 'double_pendulum':
self.model = RefineDoublePendulumModel(in_channels=64)
if self.hparams.model_name == 'refine-64' and self.hparams.dataset == 'circular_motion':
self.model = RefineCircularMotionModel(in_channels=64)
if self.hparams.model_name == 'refine-64' and self.hparams.dataset == 'swingstick_non_magnetic':
self.model = RefineSwingStickNonMagneticModel(in_channels=64)
if self.hparams.model_name == 'refine-64' and self.hparams.dataset == 'air_dancer':
self.model = RefineAirDancerModel(in_channels=64)
if self.hparams.model_name == 'refine-64' and self.hparams.dataset == 'lava_lamp':
self.model = RefineLavaLampModel(in_channels=64)
if self.hparams.model_name == 'refine-64' and self.hparams.dataset == 'fire':
self.model = RefineFireModel(in_channels=64)
if self.hparams.model_name == 'refine-64' and self.hparams.dataset == 'elastic_pendulum':
self.model = RefineElasticPendulumModel(in_channels=64)
if self.hparams.model_name == 'refine-64' and self.hparams.dataset == 'reaction_diffusion':
self.model = RefineReactionDiffusionModel(in_channels=64)
if 'refine' in self.hparams.model_name and self.hparams.if_test:
self.high_dim_model = EncoderDecoder64x1x1(in_channels=3)
# loss
self.loss_func = nn.MSELoss()
def train_forward(self, x):
if self.hparams.model_name == 'encoder-decoder' or 'refine' in self.hparams.model_name:
output, latent = self.model(x)
if self.hparams.model_name == 'encoder-decoder-64':
output, latent = self.model(x, x, False)
return output, latent
def training_step(self, batch, batch_idx):
data, target, filepath = batch
output, latent = self.train_forward(data)
train_loss = self.loss_func(output, target)
self.log('train_loss', train_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return train_loss
def validation_step(self, batch, batch_idx):
data, target, filepath = batch
output, latent = self.train_forward(data)
val_loss = self.loss_func(output, target)
self.log('val_loss', val_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return val_loss
def test_step(self, batch, batch_idx):
if self.hparams.model_name == 'encoder-decoder' or self.hparams.model_name == 'encoder-decoder-64':
data, target, filepath = batch
if self.hparams.model_name == 'encoder-decoder':
output, latent = self.model(data)
if self.hparams.model_name == 'encoder-decoder-64':
output, latent = self.model(data, data, False)
test_loss = self.loss_func(output, target)
self.log('test_loss', test_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
# save the output images and latent vectors
self.all_filepaths.extend(filepath)
for idx in range(data.shape[0]):
comparison = torch.cat([data[idx,:, :, :128].unsqueeze(0),
data[idx,:, :, 128:].unsqueeze(0),
target[idx, :, :, :128].unsqueeze(0),
target[idx, :, :, 128:].unsqueeze(0),
output[idx, :, :, :128].unsqueeze(0),
output[idx, :, :, 128:].unsqueeze(0)])
save_image(comparison.cpu(), os.path.join(self.pred_log_dir, filepath[idx]), nrow=1)
latent_tmp = latent[idx].view(1, -1)[0]
latent_tmp = latent_tmp.cpu().detach().numpy()
self.all_latents.append(latent_tmp)
if 'refine' in self.hparams.model_name:
data, target, filepath = batch
_, latent = self.high_dim_model(data, data, False)
latent = latent.squeeze(-1).squeeze(-1)
latent_reconstructed, latent_latent = self.model(latent)
output, _ = self.high_dim_model(data, latent_reconstructed.unsqueeze(2).unsqueeze(3), True)
# calculate losses
pixel_reconstruction_loss = self.loss_func(output, target)
test_loss = self.loss_func(latent_reconstructed, latent)
self.log('test_loss', test_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log('pixel_reconstruction_loss', pixel_reconstruction_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
# save the output images and latent vectors
self.all_filepaths.extend(filepath)
for idx in range(data.shape[0]):
comparison = torch.cat([data[idx, :, :, :128].unsqueeze(0),
data[idx, :, :, 128:].unsqueeze(0),
target[idx, :, :, :128].unsqueeze(0),
target[idx, :, :, 128:].unsqueeze(0),
output[idx, :, :, :128].unsqueeze(0),
output[idx, :, :, 128:].unsqueeze(0)])
save_image(comparison.cpu(), os.path.join(self.pred_log_dir, filepath[idx]), nrow=1)
latent_tmp = latent[idx].view(1, -1)[0]
latent_tmp = latent_tmp.cpu().detach().numpy()
self.all_latents.append(latent_tmp)
# save latent_latent: the latent vector in the refine network
latent_latent_tmp = latent_latent[idx].view(1, -1)[0]
latent_latent_tmp = latent_latent_tmp.cpu().detach().numpy()
self.all_refine_latents.append(latent_latent_tmp)
# save latent_reconstructed: the latent vector reconstructed by the entire refine network
latent_reconstructed_tmp = latent_reconstructed[idx].view(1, -1)[0]
latent_reconstructed_tmp = latent_reconstructed_tmp.cpu().detach().numpy()
self.all_reconstructed_latents.append(latent_reconstructed_tmp)
def test_save(self):
if self.hparams.model_name == 'encoder-decoder' or self.hparams.model_name == 'encoder-decoder-64':
np.save(os.path.join(self.var_log_dir, 'ids.npy'), self.all_filepaths)
np.save(os.path.join(self.var_log_dir, 'latent.npy'), self.all_latents)
if 'refine' in self.hparams.model_name:
np.save(os.path.join(self.var_log_dir, 'ids.npy'), self.all_filepaths)
np.save(os.path.join(self.var_log_dir, 'latent.npy'), self.all_latents)
np.save(os.path.join(self.var_log_dir, 'refine_latent.npy'), self.all_refine_latents)
np.save(os.path.join(self.var_log_dir, 'reconstructed_latent.npy'), self.all_reconstructed_latents)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.hparams.lr_schedule, gamma=self.hparams.gamma)
return [optimizer], [scheduler]
def paths_to_tuple(self, paths):
new_paths = []
for i in range(len(paths)):
tmp = paths[i].split('.')[0].split('_')
new_paths.append((int(tmp[0]), int(tmp[1])))
return new_paths
def setup(self, stage=None):
if stage == 'fit':
# for the training of the refine network, we need to have the latent data as the dataset
if 'refine' in self.hparams.model_name:
high_dim_var_log_dir = self.var_log_dir.replace('refine', 'encoder-decoder')
train_data = torch.FloatTensor(np.load(os.path.join(high_dim_var_log_dir+'_train', 'latent.npy')))
train_target = torch.FloatTensor(np.load(os.path.join(high_dim_var_log_dir+'_train', 'latent.npy')))
val_data = torch.FloatTensor(np.load(os.path.join(high_dim_var_log_dir+'_val', 'latent.npy')))
val_target = torch.FloatTensor(np.load(os.path.join(high_dim_var_log_dir+'_val', 'latent.npy')))
train_filepaths = list(np.load(os.path.join(high_dim_var_log_dir+'_train', 'ids.npy')))
val_filepaths = list(np.load(os.path.join(high_dim_var_log_dir+'_val', 'ids.npy')))
# convert the file strings into tuple so that we can use TensorDataset to load everything together
train_filepaths = torch.Tensor(self.paths_to_tuple(train_filepaths))
val_filepaths = torch.Tensor(self.paths_to_tuple(val_filepaths))
self.train_dataset = torch.utils.data.TensorDataset(train_data, train_target, train_filepaths)
self.val_dataset = torch.utils.data.TensorDataset(val_data, val_target, val_filepaths)
else:
self.train_dataset = NeuralPhysDataset(data_filepath=self.hparams.data_filepath,
flag='train',
seed=self.hparams.seed,
object_name=self.hparams.dataset)
self.val_dataset = NeuralPhysDataset(data_filepath=self.hparams.data_filepath,
flag='val',
seed=self.hparams.seed,
object_name=self.hparams.dataset)
if stage == 'test':
self.test_dataset = NeuralPhysDataset(data_filepath=self.hparams.data_filepath,
flag='test',
seed=self.hparams.seed,
object_name=self.hparams.dataset)
# initialize lists for saving variables and latents during testing
self.all_filepaths = []
self.all_latents = []
self.all_refine_latents = []
self.all_reconstructed_latents = []
def train_dataloader(self):
train_loader = torch.utils.data.DataLoader(dataset=self.train_dataset,
batch_size=self.hparams.train_batch,
shuffle=True,
**self.kwargs)
return train_loader
def val_dataloader(self):
val_loader = torch.utils.data.DataLoader(dataset=self.val_dataset,
batch_size=self.hparams.val_batch,
shuffle=False,
**self.kwargs)
return val_loader
def test_dataloader(self):
test_loader = torch.utils.data.DataLoader(dataset=self.test_dataset,
batch_size=self.hparams.test_batch,
shuffle=False,
**self.kwargs)
return test_loader