-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCovariate_model_Psplines.R
135 lines (84 loc) · 3.09 KB
/
Covariate_model_Psplines.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
########################################
# Construct the spatial B-spline basis #
########################################
p <- 3 # Cubic B-splines
q <- 10 # Number of internal intervals (for Slovenia data we have used 27 intervals)
## Dowry death data 2001: marginal basis for longitude ##
if(dataset=="Dowry") {
x1 <- coordinates(carto)[,1]
}
## Slovenia stomach cancer data: marginal basis for longitude ##
if(dataset=="Slovenia") {
x1 <- coord[,1]
}
## Scotland lip cancer data: marginal basis for longitude ##
if(dataset=="Scotland") {
centroids <- st_centroid(carto)
coord <- st_coordinates(centroids)
x1 <- coord[,1]
}
x1 <- (x1-min(x1))/(max(x1)-min(x1))
dist1 <- (max(x1)-min(x1))/q
x1l <- min(x1)-dist1*0.05
x1r <- max(x1)+dist1*0.05
dx1 <- (x1r-x1l)/q
knots1 <- seq(x1l-p*dx1, x1r+p*dx1, by=dx1)
B1 <- spline.des(knots1,x1,p+1)$design
k1 <- ncol(B1)
## Dowry death data 2001: marginal basis for latitude ##
if(dataset=="Dowry") {
x2 <- coordinates(carto)[,2]
}
## Slovenia stomach cancer data: marginal basis for latitude ##
if(dataset=="Slovenia") {
x2 <- coord[,2]
}
## Scotland lip cancer data: marginal basis for latitude ##
if(dataset=="Scotland") {
x2 <- coord[,2]
}
x2 <- (x2-min(x2))/(max(x2)-min(x2))
dist2 <- (max(x2)-min(x2))/q
x2l <- min(x2)-dist2*0.05
x2r <- max(x2)+dist2*0.05
dx2 <- (x2r-x2l)/q
knots2 <- seq(x2l-p*dx2, x2r+p*dx2, by=dx2)
B2 <- spline.des(knots2,x2,p+1)$design
k2 <- ncol(B2)
# Row-wise Kronecker product
Rten <- function(X1,X2){
one1 <- matrix(1,1,ncol(X1))
one2 <- matrix(1,1,ncol(X2))
kronecker(X1,one2)*kronecker(one1,X2)
}
Bs <- Rten(B2,B1)
ks <- ncol(Bs)
##############################
# Spatial structure matrices #
##############################
order <- 2 # 1=RW1, 2=RW2
D1 <- diff(diag(k1),differences=order)
P1 <- t(D1)%*%D1
D2 <- diff(diag(k2),differences=order)
P2 <- t(D2)%*%D2
R1 <- kronecker(diag(k2),P1)
R2 <- kronecker(P2,diag(k1))
Cmat.s <- list(inla.as.sparse(R1),inla.as.sparse(R2))
##############################
# COVARIATE MODEL: P-splines #
##############################
Data$X1.weights <- W.sqrt%*%Data$X1
Data$W.intercept <- W.sqrt%*%rep(1, N)
Bs.W <- W.sqrt%*%Bs
Data.splines <- list(X1.weights=Data$X1.weights,
intercept=c(1,rep(NA,ks)),
ID.area=c(NA,1:ks))
f.CovP <- X1.weights ~ -1 + intercept + f(ID.area, model="generic3", Cmatrix=Cmat.s, constr=TRUE, diagonal=1e-6,
hyper=list(prec1=list(prior=sdunif),prec2=list(prior=sdunif)))
Apredictor <- cbind(Data$W.intercept, Bs.W)
CovariateP <- inla(f.CovP, family="gaussian", data=Data.splines,
control.predictor=list(compute=TRUE, A=Apredictor),
control.compute=list(dic=TRUE, cpo=TRUE, waic=TRUE),
control.inla=list(strategy=strategy, verbose=TRUE))
Data$X1.ResP <- W.sqrt.inv%*%(Data$X1.weights - CovariateP$summary.fitted.values[1:N, 1])
Data$X1.ResP <- as.vector(scale(Data$X1.ResP))