-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
756 lines (609 loc) · 27.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
# Main module for .dat file data import
# Import the numeric modules.
import numpy as np
import scipy.io.matlab as matlab
import base64
from io import BytesIO
from random import random
# Signal information
from experiment.data import SingleExperimentData
# Plotting.
import pandas as pd
import plotly.graph_objects as go
import plotly.subplots as splt
import dash
# Global collection of all loaded signals in a session.
# This is a requirement because Dash does not allow non serializable objects in Store.
signals = dict()
def webview():
"""Creates the WebView application to parse the data."""
# Create the application.
app = dash.Dash(__name__)
# Create the layout.
app.layout = dash.html.Div(
style={
'padding': '0',
},
children=[
# Left side topbar.
dash.html.Div(
style={
'display': 'inline-block',
'width': '50%',
'margin': '0',
'padding': '0',
},
children=[
dash.html.H2("Interactive analysis plot application"),
# Menu setting to select a one or two signal plot.
dash.html.Div(
children=[
'Number of signals',
dash.dcc.RadioItems(
['One', 'Two'],
'One',
id='select-number',
inline=True,
),
],
style={
'width': '30%',
'display': 'inline-block',
},
),
# Menu setting to select type of graph.
dash.html.Div(
children=[
'Graph type',
dash.dcc.Dropdown(
['Signal', 'Spectrum', 'FFT', 'Hilbert'],
'Signal',
id='select-graph',
),
],
style={
'width': '30%',
'display': 'inline-block',
},
),
# Menu setting to select compare or diff when dual.
dash.html.Div(
children=[
'Comparison type',
dash.dcc.RadioItems(
['Split', 'Overlap'],
'Split',
id='select-compare',
inline=True,
),
],
style={
'width': '30%',
'display': 'inline-block',
},
),
# Upload new signals.
dash.dcc.Upload(
id='upload-data',
multiple=True,
children=dash.html.Div([
'Drag and Drop or ',
dash.html.A('Select Files'),
' to add signals'
]),
style={
'width': '90%',
'height': '50px',
'lineHeight': '50px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '5px',
},
),
],
),
# Menu setting to select the signals.
dash.html.Div(
style={
'display': 'inline-block',
'margin': '0',
'width': '48%',
},
children=[
dash.html.Div(
children=[
'Signal A',
dash.html.Div(
children=[
'Experiment',
dash.dcc.Dropdown(id='expa-select'),
],
style={
'width': '45%',
},
),
dash.html.Div(
children=[
'Signal',
dash.dcc.Dropdown(id='siga-select'),
],
style={
'width': '45%',
},
),
],
style={
'width': '48%',
'display': 'inline-block',
},
),
dash.html.Div(
children=[
'Signal B',
dash.html.Div(
children=[
'Experiment',
dash.dcc.Dropdown(id='expb-select'),
],
style={
'width': '45%',
},
),
dash.html.Div(
children=[
'Signal',
dash.dcc.Dropdown(id='sigb-select'),
],
style={
'width': '45%',
},
),
],
style={
'width': '48%',
'display': 'inline-block',
},
),
],
),
# Configured graph.
dash.dcc.Graph(
id='main-graph',
style={
'height': '90vh',
'margin': '0',
'padding': '0',
},
),
# Storage for the processed data.
dash.dcc.Store(id='signal-storage'),
# Storage for the names of the experiments.
dash.dcc.Store(id='expname-storage'),
# Storage for the current graph configuration.
dash.dcc.Store(id='graph-config'),
],
)
app.run(threaded=True)
@dash.callback(
dash.Output('signal-storage', 'value'),
dash.Input('upload-data', 'contents'),
dash.State('upload-data', 'filename'),
)
def upload(contents: list, names: list[str]):
"""Upload file handler"""
# Declare the use of the global variable signals.
global signals
# Initialize signals if it's None.
if signals is None:
signals = dict()
# Check that something was uploaded.
if (contents is None) or (names is None):
raise dash.exceptions.PreventUpdate
# Process all uploaded files.
for name, content in zip(names, contents):
# Check if the name of the signal is in the dictionary.
if name in signals.keys():
raise dash.exceptions.PreventUpdate
# Insert the filename in the dictionary.
signals[name] = dict()
# Get the contents.
_, encoded = content.split(',')
# Decode from base 64.
decoded = BytesIO( base64.b64decode( encoded ) )
## Parse the Matlab file.
## This section is copied from the scipy source code.
## ####################################################################
# Get the Matlab major version.
mjv, mnv = matlab._miobase._get_matfile_version( decoded )
# Check if the file has a correct version.
if mjv == 0:
reader = matlab._mio.MatFile4Reader( decoded )
elif mjv == 1:
reader = matlab._mio.MatFile5Reader( decoded )
elif mjv == 2:
raise NotImplementedError('Unsupported HDF reader')
else:
raise TypeError(f'Did not recognize Matlab version {mjv}')
# Get the internal variables.
matfile = reader.get_variables(None)
## ####################################################################
# Parse the contents of the Matlab data and anlyze them.
experiment = SingleExperimentData.parse( matfile )
experiment.analyze()
# Add the experiment header to the storage.
signals[name]['header'] = experiment
# Add all signals of this experiment to the storage.
for signal in experiment.signals:
# Create the name of the signal.
signame = f"A{signal.actuator.id} S{signal.sensor.id} {signal.actuator.freq / 1000.0} kHz {signal.actuator.volts} V"
# Add this signal to the dictionary.
signals[name][signame] = signal
return random()
@dash.callback(
dash.Output('expa-select', 'options'),
dash.Input('signal-storage', 'value'),
)
def expa(ignore):
"""Updates the options list of the Signal A experiment selection."""
# Declare the use of the global variable signals.
global signals
# Do not update for None.
if signals is None:
raise dash.exceptions.PreventUpdate
return sorted( signals.keys() )
@dash.callback(
dash.Output('siga-select', 'value'),
dash.Output('siga-select', 'options'),
dash.Input('expa-select', 'value'),
)
def siga(exp: str | None):
"""Updates the options list of the Signal A signal selection."""
# Declare the use of the global variable signals.
global signals
# Do not update for None.
if (exp is None) or (signals is None):
raise dash.exceptions.PreventUpdate
# Return the list of signal names in the given experiment.
return None, sorted( signals[exp].keys() )
@dash.callback(
dash.Output('expb-select', 'options'),
dash.Input('signal-storage', 'value'),
)
def expb(ignore):
"""Updates the options list of the Signal B experiment selection."""
# Declare the use of the global variable signals.
global signals
# Do not update for None.
if signals is None:
raise dash.exceptions.PreventUpdate
return sorted( signals.keys() )
@dash.callback(
dash.Output('sigb-select', 'value'),
dash.Output('sigb-select', 'options'),
dash.Input('expb-select', 'value'),
)
def sigb(exp: str | None):
"""Updates the options list of the Signal B signal selection."""
# Declare the use of the global variable signals.
global signals
# Do not update for None.
if (exp is None) or (signals is None):
raise dash.exceptions.PreventUpdate
# Return the list of signal names in the given experiment.
return None, sorted( signals[exp].keys() )
def buildone(config: dict):
"""Creates the graph for one signal."""
# Declare the use of the global variable signals.
global signals
# Check that both epxeriment and signal are selected.
if (config['expa'] is None) or (config['siga'] is None):
raise dash.exceptions.PreventUpdate
# Get the signal requested.
signal = signals[config['expa']][config['siga']]
# Create the signal graph.
if config['graph'] == 'Signal':
# Get the X axis for all the arrays.
x = pd.Series( np.array( range( 0, len( signal.sen.flatten() ) ) ) * signal.timestep )
# Create the figure.
fig = go.Figure()
# Add all the signals.
fig.add_scatter( x=x, y=pd.Series( signal.sen.flatten() ), name='Sensor signal [filter]' )
fig.add_scatter( x=x, y=pd.Series( signal.act.flatten() ), name='Source signal [smoothed]' )
fig.add_scatter( x=x, y=pd.Series( signal.raw.flatten() ), name='Sensor signal [raw]' )
fig.add_vline( signal.endSource * signal.timestep, line={'color': "#000000"} )
fig.add_vline( signal.startSignal * signal.timestep, line={'color': "#FF00FF"} )
fig.add_vline( signal.sigmax * signal.timestep, line={'color': "#00FF00"} )
# Set the title
fig.update_layout(
title=dict(text=f"{config['siga']} signal", font=dict(size=25), yref='paper'),
xaxis_title="T [us]",
yaxis_title="Voltage [V]"
)
# Create the FFT spectrum.
elif config['graph'] == 'FFT':
# Create the figure.
fig = go.Figure()
# Add all the signals.
fig.add_scatter( x=pd.Series( signal.fftFullX.flatten() ), y=pd.Series( signal.fftFullY.flatten() ), name='Sensor spectrum [FFT]' )
# Set the title
fig.update_layout(
title=dict(text=f"{config['siga']} spectrum", font=dict(size=25), yref='paper'),
xaxis_title="F [Hz]",
)
# Create the Hilbert envelope.
elif config['graph'] == 'Hilbert':
# Create the figure.
fig = go.Figure()
# Get the X axis for all the arrays.
x = pd.Series( np.array( range( 0, len( signal.sen.flatten() ) ) ) * signal.timestep )
# Add all the signals.
fig.add_scatter( x=x, y=pd.Series( signal.hil.flatten() ), name='Sensor envelope [Hilbert]' )
fig.add_vline( signal.endSource * signal.timestep, line={'color': "#000000"} )
fig.add_vline( signal.startSignal * signal.timestep, line={'color': "#FF00FF"} )
fig.add_vline( signal.sigmax * signal.timestep, line={'color': "#00FF00"} )
# Set the title
fig.update_layout(
title=dict(text=f"{config['siga']} envelope", font=dict(size=25), yref='paper'),
xaxis_title="T [us]",
yaxis_title="Voltage [V]"
)
# Create the heatmap graph.
else:
# Create the heatmap.
heatmap = go.Heatmap( x=signal.fftT, y=np.divide( signal.fftF, 1000 ), z=signal.fftZ )
# Create the figure.
fig = go.Figure( heatmap )
# Set the title
fig.update_layout(
title=dict(text=f"{config['siga']} heatmap", font=dict(size=25), yref='paper'),
xaxis_title="T [us]",
yaxis_title="Frequency [kHz]"
)
return fig
def buildtwo(config: dict):
"""Creates the graph for two signals."""
# Declare the use of the global variable signals.
global signals
# Check that both epxeriment and signal are selected.
if (config['expa'] is None) or (config['siga'] is None) or (config['expb'] is None) or (config['sigb'] is None):
raise dash.exceptions.PreventUpdate
# Get the signal requested.
signala = signals[config['expa']][config['siga']]
signalb = signals[config['expb']][config['sigb']]
# Create the overlap graph.
if config['compare'] == 'Overlap':
# Create the signal graph.
if config['graph'] == 'Signal':
# Get the X axis for all the arrays.
xa = pd.Series( np.array( range( 0, len( signala.sen.flatten() ) ) ) * signala.timestep )
xb = pd.Series( np.array( range( 0, len( signalb.sen.flatten() ) ) ) * signalb.timestep )
# Create the figure.
fig = go.Figure()
# Add all the signals.
fig.add_scatter( x=xa, y=pd.Series( signala.sen.flatten() ), name='Sensor A signal [filter]' )
fig.add_scatter( x=xa, y=pd.Series( signala.act.flatten() ), name='Source A signal [smoothed]' )
fig.add_scatter( x=xa, y=pd.Series( signala.raw.flatten() ), name='Sensor A signal [raw]' )
fig.add_scatter( x=xb, y=pd.Series( signalb.sen.flatten() ), name='Sensor B signal [filter]' )
fig.add_scatter( x=xb, y=pd.Series( signalb.act.flatten() ), name='Source B signal [smoothed]' )
fig.add_scatter( x=xb, y=pd.Series( signalb.raw.flatten() ), name='Sensor B signal [raw]' )
# Add the timestamps.
fig.add_vline( signala.endSource * signala.timestep, line={'color': "#000000"} )
fig.add_vline( signala.startSignal * signala.timestep, line={'color': "#FF00FF"} )
fig.add_vline( signalb.endSource * signalb.timestep, line={'color': "#000000"} )
fig.add_vline( signalb.startSignal * signalb.timestep, line={'color': "#00FF00"} )
# Set the title
fig.update_layout(
title=dict(text=f"Signals of {config['siga']} and {config['sigb']}", font=dict(size=25), yref='paper'),
xaxis_title="T [us]",
yaxis_title="Voltage [mV]"
)
# Create the Hilbert envelope.
elif config['graph'] == 'Hilbert':
# Create the figure.
fig = go.Figure()
# Get the X axis for all the arrays.
x = pd.Series( np.array( range( 0, len( signala.hil.flatten() ) ) ) * signala.timestep )
# Add all the signals.
fig.add_scatter( x=x, y=pd.Series( signala.hil.flatten() ), name='Sensor A delta [Hilbert]' )
fig.add_scatter( x=x, y=pd.Series( signalb.hil.flatten() ), name='Sensor B delta [Hilbert]' )
fig.add_scatter( x=x, y=pd.Series( signala.hil.flatten() - signalb.hil.flatten() ), name='Envelope delta [Hilbert]' )
# Add the timestamps.
fig.add_vline( signala.endSource * signala.timestep, line={'color': "#000000"}, row=1, col=1 )
fig.add_vline( signala.startSignal * signala.timestep, line={'color': "#FF00FF"}, row=1, col=1 )
fig.add_vline( signalb.endSource * signalb.timestep, line={'color': "#000000"}, row=2, col=1 )
fig.add_vline( signalb.startSignal * signalb.timestep, line={'color': "#00FF00"}, row=2, col=1 )
# Set the title
fig.update_layout(
title=dict(text=f"{config['siga']} envelope", font=dict(size=25), yref='paper'),
xaxis_title="T [us]",
yaxis_title="Voltage [mV]"
)
# Create the FFT spectrum.
elif config['graph'] == 'FFT':
# Create the figure.
fig = go.Figure()
# Add all the signals.
fig.add_scatter( x=pd.Series( signala.fftFullX.flatten() ), y=pd.Series( signala.fftFullY.flatten() ), name='Sensor A spectrum [FFT]' )
fig.add_scatter( x=pd.Series( signalb.fftFullX.flatten() ), y=pd.Series( signalb.fftFullY.flatten() ), name='Sensor B spectrum [FFT]' )
# Set the title
fig.update_layout(
title=dict(text=f"{config['siga']} and {config['sigb']} spectrums", font=dict(size=25), yref='paper'),
xaxis_title="F [Hz]",
)
# Create the heatmap graph.
else:
# Create the heatmap.
heatmap = go.Heatmap( x=signala.fftT, y=np.divide( signala.fftF, 1000 ), z=signala.fftZ - signalb.fftZ )
# Create the figure.
fig = go.Figure( heatmap )
# Set the title
fig.update_layout(
title=dict(text=f"Heatmap Diff {config['siga']} - {config['sigb']}", font=dict(size=25), yref='paper'),
xaxis_title="T [us]",
yaxis_title="Frequency [kHz]"
)
# Create the split graphs.
else:
# Create the signal graph.
if config['graph'] == 'Signal':
# Get the signal requested.
signala = signals[config['expa']][config['siga']]
signalb = signals[config['expb']][config['sigb']]
# Get the X axis for all the arrays.
xa = pd.Series( np.array( range( 0, len( signala.sen.flatten() ) ) ) * signala.timestep )
xb = pd.Series( np.array( range( 0, len( signalb.sen.flatten() ) ) ) * signalb.timestep )
# Create the figure.
fig = splt.make_subplots(rows=2, cols=1, shared_xaxes=True)
# Calculate the min and max of the graphs.
ymin = np.min([
np.min(signalb.sen.flatten()), np.min( signala.sen.flatten() ),
np.min(signalb.raw.flatten()), np.min( signala.raw.flatten() ),
])
ymax = np.max([
np.max(signalb.sen.flatten()), np.max( signala.sen.flatten() ),
np.max(signalb.raw.flatten()), np.max( signala.raw.flatten() ),
])
# Fix the Y axis ranges.
fig.update_yaxes( range=[ymin, ymax], row=1, col=1 )
fig.update_yaxes( range=[ymin, ymax], row=2, col=1 )
# Add all the signals.
fig.add_scatter( x=xa, y=pd.Series( signala.sen.flatten() ), name='Sensor A signal [filter]' , row=1, col=1 )
fig.add_scatter( x=xa, y=pd.Series( signala.act.flatten() ), name='Source A signal [smoothed]', row=1, col=1 )
fig.add_scatter( x=xa, y=pd.Series( signala.raw.flatten() ), name='Sensor A signal [raw]' , row=1, col=1 )
fig.add_scatter( x=xb, y=pd.Series( signalb.sen.flatten() ), name='Sensor B signal [filter]' , row=2, col=1 )
fig.add_scatter( x=xb, y=pd.Series( signalb.act.flatten() ), name='Source B signal [smoothed]', row=2, col=1 )
fig.add_scatter( x=xb, y=pd.Series( signalb.raw.flatten() ), name='Sensor B signal [raw]' , row=2, col=1 )
# Add the timestamps.
fig.add_vline( signala.endSource * signala.timestep, line={'color': "#000000"}, row=1, col=1 )
fig.add_vline( signala.startSignal * signala.timestep, line={'color': "#FF00FF"}, row=1, col=1 )
fig.add_vline( signalb.endSource * signalb.timestep, line={'color': "#000000"}, row=2, col=1 )
fig.add_vline( signalb.startSignal * signalb.timestep, line={'color': "#00FF00"}, row=2, col=1 )
fig.update_layout(
title=dict(text=f"Signals {config['siga']} and {config['sigb']}", font=dict(size=25), yref='paper'),
xaxis_title="T [us]",
yaxis_title="Voltage [mV]"
)
# Create the Hilbert envelope.
elif config['graph'] == 'Hilbert':
# Create the figure.
fig = splt.make_subplots(rows=2, cols=1, shared_xaxes=True)
# Get the X axis for all the arrays.
xa = pd.Series( np.array( range( 0, len( signala.hil.flatten() ) ) ) * signala.timestep )
xb = pd.Series( np.array( range( 0, len( signalb.hil.flatten() ) ) ) * signalb.timestep )
# Add all the signals.
# Add all the signals.
fig.add_scatter( x=xa, y=pd.Series( signala.hil.flatten() ), name='Sensor A envelope [Hilbert]', row=1, col=1 )
fig.add_scatter( x=xb, y=pd.Series( signalb.hil.flatten() ), name='Sensor B envelope [Hilbert]', row=2, col=1 )
# Add the timestamps.
fig.add_vline( signala.endSource * signala.timestep, line={'color': "#000000"}, row=1, col=1 )
fig.add_vline( signala.startSignal * signala.timestep, line={'color': "#FF00FF"}, row=1, col=1 )
fig.add_vline( signalb.endSource * signalb.timestep, line={'color': "#000000"}, row=2, col=1 )
fig.add_vline( signalb.startSignal * signalb.timestep, line={'color': "#00FF00"}, row=2, col=1 )
# Set the title
fig.update_layout(
title=dict(text=f"{config['siga']} and {config['sigb']} envelopes [Hilbert]", font=dict(size=25), yref='paper'),
xaxis_title="T [us]",
yaxis_title="Voltage [mV]"
)
# Create the Hilbert envelope.
elif config['graph'] == 'FFT':
# Create the figure.
fig = splt.make_subplots(rows=2, cols=1, shared_xaxes=True)
# Add all the signals.
fig.add_scatter( x=pd.Series( signala.fftFullX.flatten() ), y=pd.Series( signala.fftFullY.flatten() ), name='Sensor A spectrum [FFT]', row=1, col=1 )
fig.add_scatter( x=pd.Series( signalb.fftFullX.flatten() ), y=pd.Series( signalb.fftFullY.flatten() ), name='Sensor B spectrum [FFT]', row=2, col=1 )
# Set the title
fig.update_layout(
title=dict(text=f"{config['siga']} and {config['sigb']} spectrum [FFT]", font=dict(size=25), yref='paper'),
xaxis_title="F [Hz]",
)
# Create the heatmap graph.
else:
# Get the maximum Z value.
zmax = max( np.max( signala.fftZ.flatten() ), np.max( signalb.fftZ.flatten() ) )
# Create the heatmap.
heatmapa = go.Heatmap( x=signala.fftT, y=np.divide( signala.fftF, 1000 ), z=signala.fftZ, autocolorscale=False, zmin=0, zmax=zmax )
heatmapb = go.Heatmap( x=signalb.fftT, y=np.divide( signalb.fftF, 1000 ), z=signalb.fftZ, autocolorscale=False, zmin=0, zmax=zmax )
# Create the figure.
fig = splt.make_subplots(rows=2, cols=1, shared_xaxes=True)
# Populate the figure.
fig.add_trace( heatmapa, row=1, col=1 )
fig.add_trace( heatmapb, row=2, col=1 )
# Set title and axis.
fig.update_layout(
title=dict(text=f"Heatmaps of {config['siga']} and {config['sigb']}", font=dict(size=25), yref='paper'),
xaxis_title="T [us]",
yaxis_title="Frequency [kHz]"
)
return fig
@dash.callback(
dash.Output('main-graph', 'figure'),
dash.Input('graph-config', 'value'),
)
def buildgraph(config: dict | None):
"""Callback to create an updated graph."""
# Declare the use of the global variable signals.
global signals
# Check for an unconfigured graph.
if (config is None) or (signals is None):
raise dash.exceptions.PreventUpdate
# Create the graph view for one signal.
if config['number'] == 'One':
return buildone(config)
# Create the graph view for two signals.
else:
return buildtwo(config)
@dash.callback(
dash.Output('graph-config' , 'value'),
dash.Input('select-number' , 'value'),
dash.Input('select-graph' , 'value'),
dash.Input('select-compare', 'value'),
dash.Input('expa-select' , 'value'),
dash.Input('siga-select' , 'value'),
dash.Input('expb-select' , 'value'),
dash.Input('sigb-select' , 'value'),
dash.State('graph-config' , 'value'),
)
def cfgupdate(number: str, graph: str, compare: str, expa: str, siga: str, expb: str, sigb: str, current: dict | None):
# Ensure the current configuration is initialized.
if current is None:
current = dict([
('number' , 'One' ),
('graph' , 'Signal'),
('compare', 'Split' ),
('expa' , None ),
('siga' , None ),
('expb' , None ),
('sigb' , None ),
])
# Checks which graph configuration fields are unchanged.
changes = [
number != current['number'] ,
graph != current['graph'] ,
compare != current['compare'],
expa != current['expa'] ,
siga != current['siga'] ,
expb != current['expb'] ,
sigb != current['sigb'] ,
]
# Check if there were any changes and avoid unnecessary updates.
# Comparing to False because I dont trust what the fuck 'not' is doing.
if any( changes ) == False:
raise dash.exceptions.PreventUpdate
# If the change is in signal B and number is one, do not emit changes.
if (current['number'] == 'One') and (any( changes[0:5] ) == False):
raise dash.exceptions.PreventUpdate
# Update the dict.
return dict([
('number' , number ),
('graph' , graph ),
('compare', compare),
('expa' , expa ),
('siga' , siga ),
('expb' , expb ),
('sigb' , sigb ),
])
if __name__ == "__main__":
webview()